Ligne directrice sur l’admissibilité (LDA)
Date de révision : 4 septembre 2025
Date de création : 31 mars 2025
Code CIM-11 : NA07
Code médical d'ACC : 85000 traumatisme craniocérébral, commotion cérébrale, syndrome post-commotionnel/traumatisme crânien fermé
Cette publication est disponible dans d'autres formats sur demande.
Document complet – Version PDF
Définition
Aux fins de la présente ligne directrice sur l’admissibilité (LDA), deux affections sont connues sous les appellations ci-dessous :
- Traumatisme craniocérébral léger
- syndrome post-commotionnel
- commotion cérébrale
- lésion cérébrale légère.
- Traumatisme craniocérébral modéré à sévère
- traumatisme craniocérébral modéré
- traumatisme craniocérébral sévère
- lésion cérébrale modérée à sévère.
Remarque : L'admissibilité devrait être accordée uniquement pour une affection chronique. Aux fins des critères d’admissibilité d’Anciens Combattants Canada (ACC), un traumatisme craniocérébral (TCC) ou un diagnostic équivalent, est considéré comme chronique lorsque l’affection a été présente six mois ou plus longtemps.
Anatomie et physiologie
Un traumatisme craniocérébral (TCC) est une lésion du cerveau causée par une force extérieure, qui peut entraîner des troubles cognitifs, de mobilité ou émotionnels. Les TCC peuvent être légers, modérés ou sévères, en fonction de la gravité de la blessure. Ils peuvent également être ouverts (lorsque quelque chose perce le crâne) ou fermés (lorsqu’il n’y a pas de rupture du crâne). Les TCC sont un type de lésion cérébrale qu’une personne peut contracter, et non une lésion congénitale.
Le processus d’un TCC se déroule par étapes. La première étape, appelée lésion primaire, se produit au moment de l’impact. Il peut être attribuable à une fracture du crâne ou à un objet qui pénètre dans le crâne, ou encore à un déplacement violent du cerveau à l’intérieur du crâne. Au cours de cette phase, les vaisseaux sanguins peuvent se rompre et les neurones (cellules du cerveau) peuvent être déchirés ou endommagés. La deuxième étape, connue sous le nom de lésion secondaire, se produit après l’impact initial. Elle peut durer de quelques minutes à quelques jours, et comprend des processus qui peuvent endommager encore plus le cerveau, comme le gonflement du cerveau et l’augmentation de la pression à l’intérieur de la boîte crânienne.
Dans l’armée, les TCC sont de plus en plus fréquents, notamment en raison des accidents survenus lors des entraînements, des accidents de voiture et des activités sportives. Un plus petit nombre de TCC surviennent au combat, souvent causés par des explosions ou des objets qui pénètrent le crâne. Environ 80 % des TCC dans l’armée sont légers.
Le sexe joue un rôle important dans l’incidence des TCC. En général, les hommes sont plus susceptibles d’être victimes d’un TCC, notamment en raison de comportements à risque, et les cas sont souvent moins graves. Cependant, les femmes courent un plus grand risque de voir leur état se dégrader après un TCC. Elles sont plus susceptibles de signaler des symptômes comme la fatigue, les nausées et les problèmes de sommeil, et ont tendance à connaître des temps de récupération plus longs, peut-être en raison de différences hormonales. Les femmes peuvent également être plus vulnérables aux TCC en raison de différences physiques, comme des muscles du cou plus faibles, ce qui peut augmenter le risque de commotion cérébrale. En outre, des facteurs comme la violence entre partenaires intimes, les traumatismes sexuels subis dans l’armée et l’accès limité aux soins peuvent aggraver la situation des femmes.
Traumatisme craniocérébral léger
Dans la présente section
Norme diagnostique
Diagnostic
Un diagnostic d’un médecin qualifié ou d’une infirmière praticienne est nécessaire. Dans la mesure du possible, le diagnostic d’une invalidité chronique liée à un TCC léger comprend un examen neurologique détaillé, une imagerie cérébrale, une évaluation neurocognitive et d’autres évaluations pour clarifier l’étendue du TCC et des déficits associés.
Considérations relatives au diagnostic
Les TCC légers peuvent être difficiles à diagnostiquer parce qu’il n’y a pas de signes clairs sur les images du cerveau (neuro-imagerie), que la lésion peut ne pas se manifester immédiatement et que les symptômes peuvent mettre du temps à se manifester. Les prestataires de soins de santé s’appuient généralement sur la personne blessée ou un témoin pour signaler les symptômes immédiatement après la blessure. Les images du cerveau ne sont pas nécessaires pour diagnostiquer les TCC légers. Les images servent principalement à vérifier la présence de lésions graves, comme des hémorragies ou des lésions dans le cerveau, qui peuvent nécessiter une intervention chirurgicale ou d’autres traitements immédiats.
Dans certains cas, notamment au combat, les blessés ne sont pas évalués immédiatement après la blessure. Dans ces situations, les prestataires de soins de santé peuvent être amenés à s’appuyer sur les dires de la personne blessée ou des témoins pour diagnostiquer un TCC léger. La gravité de la blessure au départ ne permet pas toujours de prédire comment la personne se rétablira. Certaines personnes souffrant d’un TCC léger peuvent avoir des problèmes à long terme, même si leur blessure semblait légère au départ.
Critères de diagnostic
Le TCC léger peut être distingué du TCC modéré et du TCC sévère à l’aide de diverses définitions diagnostiques. Par conséquent, aux fins de l’admissibilité à ACC, le diagnostic de TCC léger sera accepté par le médecin qualifié ou l’infirmière praticienne traitant.
Les critères diagnostiques les plus couramment utilisés pour distinguer les traumatismes craniocérébraux légers, modérés et sévères sont présentés dans le tableau 1 ci-dessous.
Tableau 1Note de bas de page 1 ci-dessous détaille les critères d’évaluation de la gravité des traumatismes craniocérébraux légers, modérés et sévères, et énumère également les critères de diagnostic. Ces critères comprennent l’échelle de coma de Glasgow, l’imagerie structurelle, la perte de conscience, les modifications de l’état de conscience ou de l’état mental et l’amnésie post-traumatique.
| Critères de diagnostic | Léger | Modéré | Sévère |
|---|---|---|---|
| Échelle de coma de Glasgow | 13 à 15 | 9 à 12 | 3 à 8 |
| Imagerie structurelle | NormaleFootnote * | Normale ou anormale | Normale ou anormale |
| Perte de conscience | 0 à 30 minutes | Plus longue que 30 minutes, moins longue que 24 heures | Plus longue que 24 heures |
| Altération de la conscience/état mental | Jusqu’à 24 heures | Plus longue que 24 heures | Plus longue que 24 heures |
| Amnésie post-traumatique | 0 à 1 jour | Plus longue que 1 jour, moins longue que 7 jours | Plus longue que 7 jours |
Remarques sur le tableau 1 :
-
Return to footnote * referrer La plupart des personnes souffrant d’un TCC léger auront des images cérébrales normales, ce qui signifie qu’il n’y a pas de lésions visibles. Les images cérébrales ne sont pas nécessaires pour diagnostiquer un TCC léger, mais si une image ou une IRM montre une lésion cérébrale, elles peuvent confirmer le diagnostic. Dans le passé, les TCC légers avec des lésions cérébrales visibles sur les images étaient appelés TCC légers « compliqués »
- Si le patient répond aux critères de plusieurs catégories, le niveau de gravité le plus élevé est sélectionné.
L’American Congress of Rehabilitation Medicine (Congrès américain de médecine de réadaptation) fournit également des critères diagnostiques acceptables pour les TCC légers.
Caractéristiques cliniques
Les caractéristiques cliniques d’un TCC léger peuvent varier considérablement en fonction de la gravité de la lésion et de la zone du cerveau touchée. Les TCC légers peuvent provoquer un vaste éventail de symptômes physiques, cognitifs, émotionnels et comportementaux. Certaines des caractéristiques cliniques les plus courantes associées aux TCC légers sont décrites ci-dessous.
Les symptômes physiques peuvent inclure, sans s’y limiter :
- perte de conscience : brève ou profonde après la blessure
- maux de tête : maux de tête persistants ou graves après un TCC
- des nausées et des vomissements
- vertiges et problèmes d’équilibre : difficultés d’équilibre et de coordination
- problèmes sensoriels : changements dans la vision, l’audition, le goût ou l’odorat
- fatigue et troubles du sommeil : se sentir fatigué et avoir des difficultés à dormir
- faiblesse : perte de force dans certaines parties du corps
- difficultés de coordination : troubles de la motricité fine ou globale
- tremblements ou convulsions : des tremblements incontrôlés ou des convulsions peuvent survenir dans les cas graves.
Les symptômes cognitifs peuvent inclure, sans s’y limiter :
- problèmes de mémoire : difficultés à se rappeler des événements ou à former de nouveaux souvenirs
- problèmes d’attention et de concentration : difficulté à se concentrer ou à rester attentif aux tâches à accomplir
- la confusion et la désorientation : se sentir étourdi ou avoir du mal à comprendre ce qui se passe autour de soi
- ralentissement de la pensée : difficulté à traiter l’information et lentes réactions.
Les symptômes émotionnels et comportementaux peuvent inclure, sans s’y limiter :
- sautes d’humeur : fluctuations des émotions, y compris l’irritabilité et la frustration
- l’anxiété et la dépression : sentiments d’inquiétude, de peur ou de tristesse
- agitation et nervosité
- impulsivité : agir sans réfléchir, prendre des risques sans tenir compte des conséquences
- problèmes sociaux et interpersonnels : difficultés dans les relations et les interactions sociales.
Remarque : Toutes les personnes souffrant d’un TCC léger ne présentent pas tous ces symptômes et la gravité et la durée des symptômes peuvent varier. Certains symptômes peuvent ne pas se manifester immédiatement après la blessure, mais se développer ou s’aggraver dans les heures et les jours qui suivent le traumatisme. Pour les besoins de l’ACC, les symptômes doivent être présents dans les six mois suivant la blessure initiale.
Le rétablissement après un TCC peut être très différent d’une personne à l’autre, selon la gravité de la blessure. La plupart des personnes souffrant d’un TCC léger se rétablissent dans les 7 à 10 jours, mais environ 10 à 20 % d’entre elles présentent encore des symptômes comme des maux de tête, des problèmes de vision, des nausées, de l’irritabilité et des troubles de la concentration. Si 80 à 85 % des personnes récupèrent complètement leurs capacités cognitives dans les 12 mois, environ 15 % continuent à présenter des symptômes après un an et 13,5 % ont des problèmes durables de mémoire ou cognitifs. Le rétablissement est généralement plus visible au cours des deux premières années, mais pour les TCC modérés à sévères, plus de 50 % des personnes sont confrontées à des difficultés à long terme en matière de réflexion ou d’activités quotidiennes.
Il existe deux types principaux de TCC légers : les traumatismes sans effet de souffle (ou contondantes) et les traumatismes avec effet de souffle. Les traumatismes contondants sont les plus courants et peuvent découler d’accidents, de chutes ou de chocs. Les traumatismes avec souffle sont plus fréquents dans l’armée et impliquent des ondes de choc provenant d’explosions, comme des bombes ou des engins explosifs improvisés (EEI).
Les femmes ont tendance à signaler plus de symptômes que les hommes après un TCC léger. Elles sont également plus susceptibles d’avoir des problèmes cognitifs ou de santé persistants. Les recherches montrent que les femmes en âge de procréer (entre la puberté et la ménopause) sont plus à risque d’un mauvais rétablissement, tandis que les femmes ménopausées ont tendance à mieux s’en sortir que les hommes du même âge. Les femmes souffrant d’un TCC léger signalent souvent plus de problèmes de santé mentale et de symptômes post-commotionnels. Les soldats qui travaillent dans l’infanterie et au combat, comme les ouvreurs de brèches et les tireurs d’élite, ont un risque plus élevé d’être victimes d’un TCC que ceux qui occupent des postes administratifs, et les TCC dus au combat sont liés à un risque plus élevé de symptômes durables.
Considérations liées à l’admissibilité
Dans la présente section
Section A : Causes et/ou aggravation
Aux fins des critères d’admissibilité d’ACC, les facteurs suivants sont acceptés pour causer ou aggraver les TCC légers, et peuvent être pris en considération avec les éléments de preuve pour aider à établir une relation avec le service. Les facteurs ont été déterminés sur la base d’un examen de la documentation scientifique et médicale actualisée, ainsi que des pratiques exemplaires médicales fondées sur des données probantes. Des facteurs autres que ceux énumérés peuvent être pris en considération, mais il est recommandé de consulter un consultant en prestation d’invalidité ou un conseiller médical.
Les périodes mentionnées ci-dessous le sont à titre indicatif. Dans chaque cas, la décision doit se prendre en fonction du bien-fondé de la demande et des éléments de preuve fournis.
Facteurs
- Expérience d’un événement spécifié au moment de l’apparition clinique ou de l’aggravation des symptômes d’un TCC léger.
Les événements spécifiés incluent, sans s’y limiter:
- la tête frappée par un objet
- la tête heurtant un objet
- le cerveau subit un mouvement d’accélération ou de décélération sans traumatisme externe direct à la tête, comme dans le cas d’un coup de fouet cervical
- une explosion ou un souffle.
- Avoir subi des forces répétées de commotion cérébrale ou de sous-commotion répétées au moment de l’apparition clinique ou de l’aggravation des symptômes d’un TCC léger. Il peut s’agir, par exemple, d’ouvreurs de brèches forçant l’entrée d’une zone fermée ou de tireurs d’élite tirant de manière répétée avec des armes puissantes.
- Avoir subi un TCC léger consécutif, c’est-à-dire avoir subi un nouveau TCC léger avant le rétablissement entier d’un TCC antérieur au moment de l’apparition clinique ou de l’aggravation des symptômes d’un TCC léger.
- Être dans l’incapacité d’obtenir un traitement clinique approprié du TCC léger.
Section B : Affections dont il faut tenir compte dans la détermination de l’admissibilité/l’évaluation
La section B fournit une liste des affections diagnostiquées qu’ACC prend en considération dans la détermination de l’admissibilité et l’évaluation du TCC léger.
- Maux de tête post-traumatiques
- Migraines post-traumatiques
- Vertiges non spécifiques
Remarque : Les symptômes physiques ou psychologiques d’un TCC léger, comme les changements d’humeur, l’anxiété, les troubles du sommeil, la fatigue, les troubles de la cognition et les maux de tête, font partie de l’admissibilité et de l’évaluation du TCC. Lorsque les symptômes évoluent vers une affection diagnostiquée distincte, une admissibilité consécutive peut être envisagée.
Section C : Affections courantes pouvant découler, en totalité ou en partie, du traumatisme craniocérébral léger et/ou de son traitement
La section C est une liste de conditions qui peuvent être causées ou aggravées par un TCC léger ou son traitement. Les affections énumérées à la section C ne sont pas comprises dans la détermination de l’admissibilité et l’évaluation du TCC léger. Une décision d’admissibilité en raison d’une affection consécutive peut être prise si le bien-fondé de la demande le justifie et si les éléments de preuve médicale montrent l’existence d’une relation consécutive.
Des conditions autres que celles énumérées à la section C peuvent être prises en considération; il est recommandé de consulter un consultant en prestations d’invalidité ou un conseiller médical.
- Troubles du sommeil, y compris, mais sans s’y limiter :
- trouble de l’insomnie
- trouble de l’hypersomnolence
- troubles respiratoires du sommeil
- apnée obstructive du sommeil
- apnée centrale du sommeil
- apnée du sommeil mixte
- Troubles psychiatriques cliniquement significatifs (avec preuve de l’apparition des symptômes dans les cinq ans suivant la blessure).
Remarque : Aux fins des critères d’admissibilité d’ACC, « cliniquement significatif » signifie que le trouble demande un traitement et une gestion clinique continus.
Traumatisme craniocérébral modéré à sévère
Dans la présente section
Norme diagnostique
Diagnostic
Un diagnostic d’un médecin qualifié est nécessaire. Dans la mesure du possible, le diagnostic d’un handicap chronique lié à un TCC modéré ou sévère peut comprendre un examen neurologique détaillé, une imagerie cérébrale, une évaluation cognitive et d’autres évaluations pour clarifier l’étendue du TCC et des déficits connexes.
Considérations relatives au diagnostic
Les documents doivent être aussi complets que possible. Pour les besoins d’ACC, des résultats d’imagerie diagnostique en guise de confirmation sont requis pour l’admissibilité d’un TCC modéré ou sévère.
Critères de diagnostic
Les traumatismes craniocérébraux (TCC) modérées à sévères surviennent lorsque le cerveau est endommagé par des forces extérieures. Il s’illustre par au moins un des signes suivants :
- perte de conscience pendant plus de 30 minutes
- perte de mémoire pendant plus de 24 heures
- lésions cérébrales visibles par imagerie cérébrale (comme une IRM ou une tomodensitométrie)
- lésion de la couche protectrice qui entoure le cerveau (dure-mère)
- un score sur l’échelle de coma de Glasgow inférieur à 13.
Pour diagnostiquer un TCC modéré à sévère, une blessure qui a entraîné une perturbation des fonctions cérébrales doit avoir une cause manifeste. Les causes courantes d’un TCC modéré ou sévère sont les suivantes :
- le cerveau est frappé par un objet ou une force
- la tête heurte une surface dure
- le cerveau se déplace brusquement à l’intérieur du crâne sans impact direct (comme lors d’une entorse cervicale)
- forces résultant d’un souffle ou d’une explosion.
La gravité de la blessure est souvent mesurée par l’échelle de coma de Glasgow (Glasgow Coma Scale - GCS), qui est remplie après la blessure, une fois que la personne a été traitée et qu’elle n’est plus sous sédatifs. Un score GCS de 8 ou moins signifie un TCC sévère, tandis qu’un score de 9 à 12 signifie généralement un TCC modéré.
Caractéristiques cliniques
Les TCC modérés à sévères peuvent provoquer un large éventail de symptômes, en fonction de la gravité de la lésion et des parties du cerveau touchées. Voici des symptômes courants :
- Problèmes de mémoire et de réflexion : Les personnes souffrant d’un TCC modéré ou sévère ont souvent des difficultés à se souvenir, à se concentrer et à résoudre des problèmes. Elles peuvent également avoir plus de mal à apprendre de nouvelles informations et à assimiler les choses plus lentement.
- Altérations de l’humeur et du comportement : Après un TCC modéré ou sévère, les personnes peuvent ressentir des sautes d’humeur, de l’irritabilité ou d’autres changements émotionnels et comportementaux. Ces changements peuvent affecter leurs relations et leur qualité de vie en général.
- Problèmes physiques : Les personnes souffrant de lésions cérébrales modérées à sévères peuvent avoir des problèmes de coordination, de faiblesse musculaire ou d’équilibre à long terme. Elles peuvent également avoir des difficultés avec la motricité fine, comme écrire ou boutonner une chemise. Certaines peuvent subir des modifications permanentes de leurs sens, comme la vision, l’audition, le goût ou l’odorat. Des troubles durables de l’élocution ou du langage peuvent également persister. Ces troubles rendent difficile de trouver les mots, d’exprimer des idées ou de comprendre ce que les autres disent ou écrivent. De nombreuses personnes souffrant d’un TCC modéré ou sévère sont également confrontées à une fatigue persistante, à un manque d’énergie, à des problèmes de sommeil et à des douleurs chroniques. Les crises d’épilepsie peuvent également être un problème pour certaines personnes longtemps après la blessure.
Dans l’armée, les causes les plus courantes de TCC modérés à sévères comprennent, sans s’y limiter, les explosions, les chutes, les collisions de véhicules, les blessures causées par des fragments et d’autres types de traumatismes.
Les femmes ménopausées ont tendance à mieux se rétablir que les hommes après un TCC modéré ou sévère, ce qui n’est pas le cas des femmes en préménopause ou en périménopause (avant ou autour de la ménopause). Les femmes signalent également des symptômes plus graves après un traumatisme crânien que les hommes.
Les militaires qui travaillent dans l’armée ou au combat courent un risque plus élevé de souffrir d’un TCC car leur travail les expose souvent à des situations plus dangereuses, comme les détonations, les explosions et les chocs physiques. En revanche, les personnes occupant des fonctions administratives sont moins susceptibles d’être confrontées à ces types de dangers, et ont donc généralement moins de risques de subir un TCC.
Les TCC modérés à sévères sont moins fréquents que les TCC légers, mais ils entraînent généralement des problèmes plus graves à long terme. Environ 20 % des personnes souffrant d’un TCC modéré ou sévère retrouvent leur niveau de fonctionnement normal, mais il faut parfois deux ans ou plus pour que les symptômes s’atténuent.
Considérations liées à l’admissibilité
Dans la présente section
Section A: Causes et/ou aggravation
Aux fins de l’admissibilité à ACC, on considère que les facteurs suivants causent ou aggravent les TCC modérés à sévères, et peuvent être pris en considération avec les éléments de preuve pour aider à établir un lien avec le service. Les facteurs ont été déterminés sur la base d’une analyse de la littérature scientifique et médicale actualisée, ainsi que des meilleures pratiques médicales fondées sur des données probantes. Des facteurs autres que ceux énumérés peuvent être pris en considération, mais il est recommandé de consulter un conseiller en prestation d’invalidité ou un conseiller médical.
Les conditions énoncées ci-dessous sont fournies à titre indicatif. Dans chaque cas, la décision doit être prise en fonction du bien-fondé de la demande et des éléments de preuve fournis.
Facteurs
- Subissant un événement spécifié au moment de l’apparition clinique d’un TCC modéré à sévère.
Au nombre des événements précisés se trouvent :
- la tête frappée par un objet
- la tête heurtant un objet
- le cerveau subit un mouvement d’accélération ou de décélération sans traumatisme externe direct à la tête, comme dans le cas d’un coup de fouet cervical
- un corps étranger pénétrant le cerveau
- une explosion ou un souffle.
- Incapacité d’obtenir un traitement médical approprié pour le TCC modéré à sévère.
Section B : Affections dont il faut tenir compte dans la détermination de l’admissibilité/l’évaluation
La section B fournit une liste des affections diagnostiquées qu’ACC prend en considération dans la détermination de l’admissibilité et l’évaluation du TCC modéré à sévère.
- Traumatisme crânien perforant
- Traumatisme crânien ouvert
- Mal de tête, y compris, mais sans s’y limiter :
- Maux de tête post-traumatiques
- Migraine post-traumatique
Remarque : Les symptômes physiques ou psychologiques d’un TCC modéré à sévère, comme les changements d’humeur, l’anxiété, les troubles du sommeil, la fatigue, les troubles de la cognition et les maux de tête, font partie de l’admissibilité et de l’évaluation du TCC. Lorsque les symptômes évoluent vers une affection diagnostiquée distincte, une admissibilité consécutive peut être envisagée.
Section C : Affections courantes pouvant découler, en totalité ou en partie, du traumatisme craniocérébral modéré à sévère et/ou de son traitement
La section C est une liste des conditions qui peuvent être causées ou aggravées par un TCC modéré à sévère ou son traitement. Les affections énumérées à la section C ne sont pas comprises dans la détermination de l’admissibilité et l’évaluation du TCC modéré à sévère. Une décision d’admissibilité en raison d’une affection consécutive peut être prise si le bien-fondé de la demande le justifie et si les éléments de preuve médicale montrent l’existence d’une relation consécutive.
Des conditions autres que celles énumérées à la section C peuvent être prises en considération; il est recommandé de consulter un consultant en prestation d’invalidité ou un conseiller médical.
- Troubles du sommeil, y compris, mais sans s’y limiter :
- trouble de l’insomnie
- trouble de l’hypersomnolence
- troubles respiratoires du sommeil :
- apnée obstructive du sommeil
- apnée centrale du sommeil
- apnée du sommeil mixte.
- Troubles neurocognitifs, y compris, mais sans s’y limiter :
- trouble neurocognitif majeur/démence (avec preuve de l’apparition des symptômes dans les 15 ans suivant la blessure)
- encéphalopathie traumatique chronique.
- Troubles épileptiques/épilepsie post-traumatique
- Vertige positionnel paroxystique bénin (VPPB)
- Perte auditive neurosensorielle
- Acouphènes
- Troubles psychiatriques cliniquement significatifs (avec preuve de l’apparition des symptômes dans les cinq ans suivant la blessure).
Remarque : Aux fins des critères d’admissibilité d’ACC, « cliniquement significatif » signifie que le trouble demande un traitement et une gestion clinique continus.
Liens
Directives et politiques connexes d’ACC :
- Acouphènes – Lignes directrices sur l’admissibilité
- État de stress post-traumatique – Lignes directrices sur l’admissibilité
- Hypoacousie – Lignes directrices sur l’admissibilité
- Schizophrénie – Lignes directrices sur l’admissibilité
- Trouble de l’adaptation – Lignes directrices sur l’admissibilité
- Troubles anxieux – Lignes directrices sur l’admissibilité
- Troubles bipolaires et troubles connexes – Lignes directrices sur l’admissibilité
- Troubles dépressifs – Lignes directrices sur l’admissibilité
- Troubles des conduites alimentaires et de l’ingestion d’aliments – Lignes directrices sur l’admissibilité
- Troubles liés à l'utilisation de substances – Lignes directrices sur l’admissibilité
- Troubles liés au vertige – Lignes directrices sur l’admissibilité
- Troubles respiratoires du sommeil – Lignes directrices sur l’admissibilité
- Indemnité pour douleur et souffrance – Politiques
- Demandes de pension d'invalidité de la Gendarmerie royale canadienne – Politiques
- Admissibilité double – Prestations d’invalidité – Politiques
- Détermination d’une invalidité – Politiques
- Prestations d’invalidité versées à l’égard du service en temps de paix – Principe d’indemnisation – Politiques
- Prestations d’invalidité versées à l’égard du service en temps de guerre et du service spécial – Principe d’assurance
- Invalidité consécutive à une blessure ou maladie non liée au service – Politiques
- Invalidité consécutive – Politiques
- Bénéfice du doute – Politiques
Références compter à 31 mars 2025
Disponible en anglais seulement
Akhanemhe, R., Stevelink, S. A. M., Corbett, A., Ballard, C., Brooker, H., Creese, B., Aarsland, D., Hampshire, A., & Greenberg, N. (2024). Is lifetime traumatic brain injury a risk factor for mild cognitive impairment in veterans compared to non-veterans? European Journal of Psychotraumatology, 15(1), 2291965. https://doi.org/10.1080/20008066.2023.2291965
Akin, F. W., Murnane, O. D., Hall, C. D., & Riska, K. M. (2017). Vestibular consequences of mild traumatic brain injury and blast exposure: A review. Brain Injury, 31(9), 1188–1194. https://doi.org/10.1080/02699052.2017.1288928
Akin, F. W., Murnane, O. D., Hall, C. D., Riska, K. M., & Sears, J. (2022). Vestibular and balance function in veterans with chronic dizziness associated with mild traumatic brain injury and blast exposure. Frontiers in Neurology, 13, 930389. https://doi.org/10.3389/fneur.2022.930389
al-Dahhak, R., Khoury, R., Qazi, E., & Grossberg, G. T. (2018). Traumatic Brain Injury, Chronic Traumatic Encephalopathy, and Alzheimer Disease. Clinics in Geriatric Medicine, 34(4), 617–635. https://doi.org/10.1016/j.cger.2018.06.008
Aldag, M., Armstrong, R. C., Bandak, F., Bellgowan, P. S. F., Bentley, T., Biggerstaff, S., Caravelli, K., Cmarik, J., Crowder, A., DeGraba, T. J., Dittmer, T. A., Ellenbogen, R. G., Greene, C., Gupta, R. K., Hicks, R., Hoffman, S., Latta, R. C., Leggieri, M. J., Marion, D., … Zheng, J. (2017). The Biological Basis of Chronic Traumatic Encephalopathy following Blast Injury: A Literature Review. Journal of Neurotrauma, 34(S1), S26–S43. https://doi.org/10.1089/neu.2017.5218
Amin, A., Karimi, T., & Mahmoodkhani, M. (2023). Traumatic Brain Injury and the Risk of Parkinson’s Disease. https://doi.org/10.30491/hpr.2024.442484.1416
Andrew, A. S., Anderson, F. L., Lee, S. L., Von Herrmann, K. M., & Havrda, M. C. (2021). Lifestyle Factors and Parkinson’s Disease Risk in a Rural New England Case-Control Study. Parkinson’s Disease, 2021, 5541760. https://doi.org/10.1155/2021/5541760
Andriessen, T. M. J. C., Jacobs, B., & Vos, P. E. (2010). Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. Journal of Cellular and Molecular Medicine, 14(10), Article 10. https://doi.org/10.1111/j.1582-4934.2010.01164.x
Asken, B. M., Sullan, M. J., DeKosky, S. T., Jaffee, M. S., & Bauer, R. M. (2017). Research Gaps and Controversies in Chronic Traumatic Encephalopathy: A Review. JAMA Neurology, 74(10), 1255–1262. https://doi.org/10.1001/jamaneurol.2017.2396
Australian Government Repatriation Medical Authority (Oct, 2018). Statement of principles concerning concussion (Balance of probabilities) (No. 93 of 2018).SOPs - Repatriation Medical Authority
Australian Government Repatriation Medical Authority (2018). Statement of principles concerning concussion (Reasonable hypothesis) (No. 92 of 2018). SOPs - Repatriation Medical Authority
Australian Government Repatriation Medical Authority (2018). Statement of principles concerning moderate to severe traumatic brain injury (Balance of probabilities) (No. 95 of 2018) SOPs - Repatriation Medical Authority
Australian Government Repatriation Medical Authority (2018). Statement of principles concerning moderate to severe traumatic brain injury (Reasonable hypothesis) (No. 94 of 2018) SOPs - Repatriation Medical Authority
Babakhanyan, I., Brickell, T. A., Bailie, J. M., Hungerford, L., Lippa, S. M., French, L. M., & Lange, R. T. (2024). Gender Disparities in Neurobehavioral Symptoms and the Role of Post-Traumatic Symptoms in US Service Members Following Mild Traumatic Brain Injury. Journal of Neurotrauma. https://doi.org/10.1089/neu.2022.0462
Bai, L., Bai, G., Wang, S., Yang, X., Gan, S., Jia, X., Yin, B., & Yan, Z. (2020). Strategic white matter injury associated with long‐term information processing speed deficits in mild traumatic brain injury. Human Brain Mapping, 41(15), 4431–4441. https://doi.org/10.1002/hbm.25135
Bailie, J. M., Lippa, S. M., Hungerford, L., French, L. M., Brickell, T. A., & Lange, R. T. (2024). Cumulative Blast Exposure During a Military Career Negatively Impacts Recovery from Traumatic Brain Injury. Journal of Neurotrauma, 41(5–6), 604–612. https://doi.org/10.1089/neu.2022.0192
Baker, A. J., Topolovec-Vranic, J., Michalak, A., Pollmann-Mudryj, M.-A., Ouchterlony, D., Cheung, B., & Tien, H. C. (2011). Controlled blast exposure during forced explosive entry training and mild traumatic brain injury. The Journal of Trauma, 71(5 Suppl 1), S472-477. https://doi.org/10.1097/TA.0b013e318232e7da
Barnes, D. E., Byers, A. L., Gardner, R. C., Seal, K. H., Boscardin, W. J., & Yaffe, K. (2018). Association of Mild Traumatic Brain Injury With and Without Loss of Consciousness With Dementia in US Military Veterans. JAMA Neurology, 75(9), 1055–1061. https://doi.org/10.1001/jamaneurol.2018.0815
Barshikar, S., & Bell, K. R. (2017). Sleep Disturbance After TBI. Current Neurology and Neuroscience Reports, 17(11), 87. https://doi.org/10.1007/s11910-017-0792-4
Baskin, B. M., Logsdon, A. F., Janet Lee, S., Foresi, B. D., Peskind, E., Banks, W. A., Cook, D. G., & Schindler, A. G. (2023). Timing matters: Sex differences in inflammatory and behavioral outcomes following repetitive blast mild traumatic brain injury. Brain, Behavior, and Immunity, 110, 222–236. https://doi.org/10.1016/j.bbi.2023.03.003
Batson, C., Froese, L., Gomez, A., Sainbhi, A. S., Stein, K. Y., Alizadeh, A., & Zeiler, F. A. (2021). Impact of Age and Biological Sex on Cerebrovascular Reactivity in Adult Moderate/Severe Traumatic Brain Injury: An Exploratory Analysis. Neurotrauma Reports, 2(1), 488–501. https://doi.org/10.1089/neur.2021.0039
Batson, C., Froese, L., Sekhon, M., Griesdale, D., Gomez, A., Thelin, E. P., Raj, R., Aries, M., Gallagher, C., Bernard, F., Kramer, A. H., & Zeiler, F. A. (2023). Impact of Chronological Age and Biological Sex on Cerebrovascular Reactivity in Moderate/Severe Traumatic Brain Injury: A CAnadian High-Resolution Traumatic Brain Injury (CAHR-TBI) Study. Journal of Neurotrauma, 40(11–12), 1098–1111. https://doi.org/10.1089/neu.2022.0293
Bazarian, J. J., Blyth, B., Mookerjee, S., He, H., & McDermott, M. P. (2010). Sex differences in outcome after mild traumatic brain injury. Journal of Neurotrauma, 27(3), 527–539. https://doi.org/10.1089/neu.2009.1068
Bedard, M., Steffener, J., & Taler, V. (2020). Long-term cognitive impairment following single mild traumatic brain injury with loss of consciousness: Findings from the Canadian Longitudinal Study on Aging. Journal of Clinical and Experimental Neuropsychology, 42(4), 344–351. https://doi.org/10.1080/13803395.2020.1714552
Belanger, H. G., Bowling, F., & Yao, E. F. (2020). Low-Level Blast Exposure in Humans A Systematic Review of Acute and Chronic Effects. Journal of Special Operations Medicine: A Peer Reviewed Journal for SOF Medical Professionals, 20(1), 87–93. https://doi.org/10.55460/3AC6-AX9I
Belding, J. N., Bonkowski, J., & Englert, R. (2024). Traumatic brain injury and occupational risk of low-level blast exposure on adverse career outcomes: An examination of administrative and medical separations from Service (2005–2015). Frontiers in Neurology, 15, 1389757. https://doi.org/10.3389/fneur.2024.1389757
Belding, J. N., Englert, R., Bonkowski, J., & Thomsen, C. J. (2021). Occupational Risk of Low-Level Blast Exposure and TBI-Related Medical Diagnoses: A Population-Based Epidemiological Investigation (2005–2015). International Journal of Environmental Research and Public Health, 18(24), 12925. https://doi.org/10.3390/ijerph182412925
Belding, J. N., Englert, R. M., Fitzmaurice, S., Jackson, J. R., Koenig, H. G., Hunter, M. A., Thomsen, C. J., & da Silva, U. O. (2021). Potential Health and Performance Effects of High-Level and Low-Level Blast: A Scoping Review of Two Decades of Research. Frontiers in Neurology, 12, 628782. https://doi.org/10.3389/fneur.2021.628782
Belding, J. N., Fitzmaurice, S., Englert, R. M., Koenig, H. G., Thomsen, C. J., & Olaghere da Silva, U. (2020). Self-Reported Concussion Symptomology during Deployment: Differences as a Function of Injury Mechanism and Low-Level Blast Exposure. Journal of Neurotrauma, 37(20), 2219–2226. https://doi.org/10.1089/neu.2020.6997
Belding, J. N., Fitzmaurice, S., Englert, R. M., Lee, I., Kowitz, B., Highfill-McRoy, R. M., Thomsen, C. J., & da Silva, U. (2020). Blast Exposure and Risk of Recurrent Occupational Overpressure Exposure Predict Deployment TBIs. Military Medicine, 185(5–6), e538–e544. https://doi.org/10.1093/milmed/usz289
Belding, J. N., Kolaja, C. A., Rull, R. P., & Trone, D. W. (2023). Single and repeated high-level blast, low-level blast, and new-onset self-reported health conditions in the U.S. Millennium Cohort Study: An exploratory investigation. Frontiers in Neurology, 14, 1110717. https://doi.org/10.3389/fneur.2023.1110717
Bell, K., Greenwald, B., & Nakase-Richardson, R. (2022). Obstructive Sleep Apnea and Traumatic Brain Injury. Model Systems Knowledge Translation Center (MSKTC). https://msktc.org/sites/default/files/2022-11/OSA-and-TBI-508.pdf
Ben-Shlomo, Y., Darweesh, S., Llibre-Guerra, J., Marras, C., San Luciano, M., & Tanner, C. (2024). The epidemiology of Parkinson’s disease. Lancet (London, England), 403(10423), 283–292. https://doi.org/10.1016/S0140-6736(23)01419-8
Betthauser, L. M., Brenner, L. A., Cole, W., Scher, A. I., Schwab, K., & Ivins, B. J. (2018). A Clinical Evidence-Based Approach to Examine the Effects of mTBI and PTSD Symptoms on ANAM Performance in Recently Deployed Active-Duty Soldiers: Results From the Warrior Strong Study. Journal of Head Trauma Rehabilitation, 33(2), 91–100. https://doi.org/10.1097/HTR.0000000000000376
Biegon, A. (2021). Considering Biological Sex in Traumatic Brain Injury. Frontiers in Neurology, 12, 576366. https://doi.org/10.3389/fneur.2021.576366
Blaya, M. O., Raval, A. P., & Bramlett, H. M. (2022). Traumatic brain injury in women across lifespan. Neurobiology of Disease, 164, 105613. https://doi.org/10.1016/j.nbd.2022.105613
Boutté, A. M., Thangavelu, B., LaValle, C. R., Nemes, J., Gilsdorf, J., Shear, D. A., & Kamimori, G. H. (2019). Brain-related proteins as serum biomarkers of acute, subconcussive blast overpressure exposure: A cohort study of military personnel. PLOS ONE, 14(8), e0221036. https://doi.org/10.1371/journal.pone.0221036
Boutté, A. M., Thangavelu, B., Nemes, J., LaValle, C. R., Egnoto, M., Carr, W., & Kamimori, G. H. (2021). Neurotrauma Biomarker Levels and Adverse Symptoms Among Military and Law Enforcement Personnel Exposed to Occupational Overpressure Without Diagnosed Traumatic Brain Injury. JAMA Network Open, 4(4), e216445. https://doi.org/10.1001/jamanetworkopen.2021.6445
Boyle, E., Cancelliere, C., Hartvigsen, J., Carroll, L. J., Holm, L. W., & Cassidy, J. D. (2014). Systematic Review of Prognosis After Mild Traumatic Brain Injury in the Military: Results of the International Collaboration on Mild Traumatic Brain Injury Prognosis. Archives of Physical Medicine and Rehabilitation, 95(3), S230–S237. https://doi.org/10.1016/j.apmr.2013.08.297
Brahm, K. D., Wilgenburg, H. M., Kirby, J., Ingalla, S., Chang, C.-Y., & Goodrich, G. L. (2009). Visual Impairment and Dysfunction in Combat-Injured Servicemembers With Traumatic Brain Injury. Optometry and Vision Science, 86(7), 817–825. https://doi.org/10.1097/OPX.0b013e3181adff2d
Breeding, T., Martinez, B., Katz, J., Nasef, H., Santos, R. G., Zito, T., & Elkbuli, A. (2024). The Association Between Gender and Clinical Outcomes in Patients With Moderate to Severe Traumatic Brain Injury: A Systematic Review and Meta-Analysis. The Journal of Surgical Research, 295, 791–799. https://doi.org/10.1016/j.jss.2023.11.035
Brenner, L. A., Forster, J. E., Gradus, J. L., Hostetter, T. A., Hoffmire, C. A., Walsh, C. G., Larson, M. J., Stearns-Yoder, K. A., & Adams, R. S. (2023). Associations of Military-Related Traumatic Brain Injury With New-Onset Mental Health Conditions and Suicide Risk. JAMA Network Open, 6(7), e2326296. https://doi.org/10.1001/jamanetworkopen.2023.26296
Brett, B. L., Gardner, R. C., Godbout, J., Dams-O’Connor, K., & Keene, C. D. (2022). Traumatic Brain Injury and Risk of Neurodegenerative Disorder. Biological Psychiatry, 91(5), 498–507. https://doi.org/10.1016/j.biopsych.2021.05.025
Brickell, T. A., Lippa, S. M., French, L. M., Kennedy, J. E., Bailie, J. M., & Lange, R. T. (2017). Female Service Members and Symptom Reporting after Combat and Non-Combat-Related Mild Traumatic Brain Injury. Journal of Neurotrauma, 34(2), 300–312. https://doi.org/10.1089/neu.2016.4403
Brown, N. J., Harris, M., Picton, B., Nguyen, A., Gendreau, J., Sahyouni, R., & Lin, H. W. (2024). Mild Traumatic Brain Injury and the Auditory System: An Overview of the Mechanisms, Clinical Presentations and Current Diagnostic Modalities. Journal of Neurological Surgery Part B: Skull Base, 85(S 01), P222.
Bryan, C. J., & Clemans, T. A. (2013). Repetitive Traumatic Brain Injury, Psychological Symptoms, and Suicide Risk in a Clinical Sample of Deployed Military Personnel. JAMA Psychiatry, 70(7), 686. https://doi.org/10.1001/jamapsychiatry.2013.1093
Bryden, D. W., Tilghman, J. I., & Hinds, S. R. (2019). Blast-Related Traumatic Brain Injury: Current Concepts and Research Considerations. Journal of Experimental Neuroscience, 13, 1179069519872213. https://doi.org/10.1177/1179069519872213
Burke, J. F., Stulc, J. L., Skolarus, L. E., Sears, E. D., Zahuranec, D. B., & Morgenstern, L. B. (2013). Traumatic brain injury may be an independent risk factor for stroke. Neurology, 81(1), Article 1. https://doi.org/10.1212/WNL.0b013e318297eecf
Cancelliere, C., Verville, L., Stubbs, J. L., Yu, H., Hincapié, C. A., Cassidy, J. D., Wong, J. J., Shearer, H. M., Connell, G., Southerst, D., Howitt, S., Guist, B., & Silverberg, N.D. (2023). Post-Concussion Symptoms and Disability in Adults With Mild Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Journal of Neurotrauma, 40(11–12), 1045–1059. https://doi.org/10.1089/neu.2022.0185
Capehart, B., & Bass, D. (2012). Review: Managing posttraumatic stress disorder in combat veterans with comorbid traumatic brain injury. Journal of Rehabilitation Research and Development, 49(5), Article 5. https://doi.org/10.1682/jrrd.2011.10.0185
Carlson, K. F., Nelson, D., Orazem, R. J., Nugent, S., Cifu, D. X., & Sayer, N. A. (2010). Psychiatric diagnoses among Iraq and Afghanistan war veterans screened for deployment-related traumatic brain injury. Journal of Traumatic Stress, 23(1), 17–24. https://doi.org/10.1002/jts.20483
Carr, W., Kelley, A. L., Toolin, C. F., & Weber, N. S. (2020). Association of MOS-Based Blast Exposure With Medical Outcomes. Frontiers in Neurology, 11, 619. https://doi.org/10.3389/fneur.2020.00619
Carr, W., Polejaeva, E., Grome, A., Crandall, B., LaValle, C., Eonta, S. E., & Young, L. A. (2015). Relation of repeated low-level blast exposure with symptomology similar to concussion. The Journal of Head Trauma Rehabilitation, 30(1), 47–55. https://doi.org/10.1097/HTR.0000000000000064
Carr, W., Stone, J. R., Walilko, T., Young, L. A., Snook, T. L., Paggi, M. E., Tsao, J. W., Jankosky, C. J., Parish, R. V., & Ahlers, S. T. (2016). Repeated Low-Level Blast Exposure: A Descriptive Human Subjects Study. Military Medicine, 181(5 Suppl), 28–39. https://doi.org/10.7205/MILMED-D-15-00137
Castriotta, R. J., & Lai, J. M. (2001). Sleep disorders associated with traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 82(10), 1403–1406. https://doi.org/10.1053/apmr.2001.26081
Castriotta, R. J., & Murthy, J. N. (2011). Sleep disorders in patients with traumatic brain injury: A review. CNS Drugs, 25(3), 175–185. https://doi.org/10.2165/11584870-000000000-00000
Cernak, I., & Noble-Haeusslein, L. J. (2010). Traumatic Brain Injury: An Overview of Pathobiology with Emphasis on Military Populations. Journal of Cerebral Blood Flow & Metabolism, 30(2), 255–266. https://doi.org/10.1038/jcbfm.2009.203
Champagne, A. A., Coverdale, N. S., Skinner, C., Schwarz, B. A., Glikstein, R., Melkus, G., ... & Cook, D. J. (2024). Longitudinal analysis highlights structural changes in grey-and white-matter within military personnel exposed to blast. Brain Injury, 1-9.
Chanti-Ketterl, M., Pieper, C. F., Yaffe, K., & Plassman, B. L. (2023). Associations Between Traumatic Brain Injury and Cognitive Decline Among Older Male Veterans: A Twin Study. Neurology, 101(18), e1761–e1770. https://doi.org/10.1212/WNL.0000000000207819
Chase, A. (2015). Traumatic brain injury increases the risk of Parkinson disease. Nature Reviews Neurology, 11(4), 184–184. https://doi.org/10.1038/nrneurol.2015.39
Chen, Y.-H., Kang, J.-H., & Lin, H.-C. (2011). Patients with traumatic brain injury: Population-based study suggests increased risk of stroke. Stroke, 42(10), Article 10. https://doi.org/10.1161/STROKEAHA.111.620112
Churchill, N. W., Hutchison, M. G., Graham, S. J., & Schweizer, T. A. (2021). Sex differences in acute and long‐term brain recovery after concussion. Human Brain Mapping, 42(18), 5814–5826. https://doi.org/10.1002/hbm.25591
Cifu, D. X. (2022). Clinical research findings from the long-term impact of military-relevant brain injury consortium-Chronic Effects of Neurotrauma Consortium (LIMBIC-CENC) 2013-2021. Brain Injury, 36(5), 587–597. https://doi.org/10.1080/02699052.2022.2033843
Clausen, A. N., Meyers, K. R., Stamey, H. M., & Spilman, S. K. (2024). Traumatic Brain Injury, Psychological Trauma Exposure, and Anxious and Depressive Symptoms in a Clinical Population. Journal of Trauma Nursing: The Official Journal of the Society of Trauma Nurses, 31(2), 82–89. https://doi.org/10.1097/JTN.0000000000000777
Cogan, A. M., McCaughey, V. K., & Scholten, J. (2020). Gender Differences in Outcomes after Traumatic Brain Injury among Service Members and Veterans. PM & R: The Journal of Injury, Function, and Rehabilitation, 12(3), 301–314. https://doi.org/10.1002/pmrj.12237
Collen, J., Orr, N., Lettieri, C. J., Carter, K., & Holley, A. B. (2012). Sleep disturbances among soldiers with combat-related traumatic brain injury. Chest, 142(3), Article 3. https://doi.org/10.1378/chest.11-1603
Collins, C. L., Fletcher, E. N., Fields, S. K., Kluchurosky, L., Rohrkemper, M. K., Comstock, R. D., & Cantu, R. C. (2014). Neck strength: A protective factor reducing risk for concussion in high school sports. The Journal of Primary Prevention, 35(5), 309–319. https://doi.org/10.1007/s10935-014-0355-2
Combs, H. L., Berry, D. T. R., Pape, T., Babcock-Parziale, J., Smith, B., Schleenbaker, R., Shandera-Ochsner, A., Harp, J. P., & High, W. M. (2015). The Effects of Mild Traumatic Brain Injury, Post-Traumatic Stress Disorder, and Combined Mild Traumatic Brain Injury/Post-Traumatic Stress Disorder on Returning Veterans. Journal of Neurotrauma, 32(13), Article 13. https://doi.org/10.1089/neu.2014.3585
Committee on the Review of the Department of Veterans Affairs Examinations for Traumatic Brain Injury, Board on Health Care Services, Health and Medicine Division, & National Academies of Sciences, Engineering, and Medicine. (2019). Evaluation of the Disability Determination Process for Traumatic Brain Injury in Veterans (p. 25317). National Academies Press. https://doi.org/10.17226/25317
Coppel, D., Barber, J., Temkin, N. R., & Mac Donald, C. L. (2024). Combat Deployed Service Members by Blast TBI and Service Separation Status 5-years Post-deployment: Comparison of Cognitive, Neurobehavioral, and Psychological Profiles of Those Who Left vs. Those Still Serving. Military Medicine, 189(3–4), e795–e801. https://doi.org/10.1093/milmed/usad378
Davis, D. P., Douglas, D. J., Smith, W., Sise, M. J., Vilke, G. M., Holbrook, T. L., Kennedy, F., Eastman, A. B., Velky, T., & Hoyt, D. B. (2006). Traumatic brain injury outcomes in pre- and post- menopausal females versus age-matched males. Journal of Neurotrauma, 23(2), Article 2. https://doi.org/10.1089/neu.2006.23.140
de Souza, N. L., Bogner, J., Corrigan, J. D., Rabinowitz, A. R., Walker, W. C., Kumar, R. G., & Dams-O’Connor, K. (2024). The Effects of Repetitive Head Impact Exposure on Mental Health Symptoms Following Traumatic Brain Injury. The Journal of Head Trauma Rehabilitation. https://doi.org/10.1097/HTR.0000000000000936
DeGraba, T. J., Williams, K., Koffman, R., Bell, J. L., Pettit, W., Kelly, J. P., Dittmer, T. A., Nussbaum, G., Grammer, G., Bleiberg, J., French, L. M., & Pickett, T. C. (2020). Efficacy of an Interdisciplinary Intensive Outpatient Program in Treating Combat-Related Traumatic Brain Injury and Psychological Health Conditions. Frontiers in Neurology, 11, 580182. https://doi.org/10.3389/fneur.2020.580182
Delic, V., Beck, K. D., Pang, K. C. H., & Citron, B. A. (2020). Biological links between traumatic brain injury and Parkinson’s disease. Acta Neuropathologica Communications, 8(1), 45. https://doi.org/10.1186/s40478-020-00924-7
Deliz, J. R., Tanner, C. M., & Gonzalez-Latapi, P. (2024). Epidemiology of Parkinson’s Disease: An Update. Current Neurology and Neuroscience Reports, 24(6), 163–179. https://doi.org/10.1007/s11910-024-01339-w
Dell, K. (2020). Examining Headache and Postural Control Variability During Explosive Breacher Training. The Graduate School of Pensilvania State University.
DeMario, P., Waddell, K., Ali, A., Dass, R., Grewal, E., Wu, N., & Wilson, M. (2024, July 2). Rapid evidence profile #75: Examining the association between the role of military breacher and sniper and the effects of mild traumatic brain injuries. Hamilton: McMaster Health Forum. https://www.mcmasterforum.org/about-us/products
Dennis, E. L., Rowland, J. A., Esopenko, C., Tustison, N. J., Newsome, M. R., Hovenden, E. S., Avants, B. B., Gill, J., Hinds, S. R., Kenney, K., Lindsey, H. M., Martindale, S. L., Pugh, M. J., Scheibel, R. S., Shahim, P.-P., Shih, R., Stone, J. R., Troyanskaya, M., Walker, W. C., … Wilde, E. A. (2024). Brain volume changes following blast-related mild TBI in service members and veterans: A LIMBIC-CENC study. https://doi.org/10.1101/2024.02.27.24303460
Dennis, E. L., Taylor, B. A., Newsome, M. R., Troyanskaya, M., Abildskov, T. J., Betts, A. M., Bigler, E. D., Cole, J., Davenport, N., Duncan, T., Gill, J., Guedes, V., Hinds, S. R., Hovenden, E. S., Kenney, K., Pugh, M. J., Scheibel, R. S., Shahim, P.-P., Shih, R., … Wilde, E. A. (2022). Advanced brain age in deployment-related traumatic brain injury: A LIMBIC-CENC neuroimaging study. Brain Injury, 36(5), 662–672. https://doi.org/10.1080/02699052.2022.2033844
DePalma, R. G. (2015). Combat TBI: History, Epidemiology, and Injury Modes. In F. H. Kobeissy (Ed.), Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. CRC Press/Taylor & Francis. http://www.ncbi.nlm.nih.gov/books/NBK299230/
DePalma, R. G., & Hoffman, S. W. (2018). Combat blast related traumatic brain injury (TBI): Decade of recognition; promise of progress. Behavioural Brain Research, 340, 102–105. https://doi.org/10.1016/j.bbr.2016.08.036
Department of Veterans Affairs, & Department of Defense. (2016). VA/DoD clinical practice guideline for management of concussion/mild traumatic brain injury. http://www.healthquality.va.gov/management_of_concussion_mtbi.asp
Déry, J., Ouellet, B., de Guise, É., Bussières, È.-L., & Lamontagne, M.-E. (2023). Prognostic factors for persistent symptoms in adults with mild traumatic brain injury: An overview of systematic reviews. Systematic Reviews, 12(1), 127. https://doi.org/10.1186/s13643-023-02284-4
Devoto, C., Arcurio, L., Fetta, J., Ley, M., Rodney, T., Kanefsky, R., & Gill, J. (2017). Inflammation Relates to Chronic Behavioral and Neurological Symptoms in Military Personnel with Traumatic Brain Injuries. Cell Transplantation, 26(7), 1169–1177. https://doi.org/10.1177/0963689717714098
Devoto, C., Guedes, V. A., Lai, C., Leete, J. J., Mithani, S., Edwards, K., Vorn, R., Qu, B.-X., Wilde, E. A., Walker, W. C., Diaz-Arrastia, R., Werner, J. K., Kenney, K., & Gill, J. M. (2022). Remote blast-related mild traumatic brain injury is associated with differential expression of exosomal microRNAs identified in neurodegenerative and immunological processes. Brain Injury, 36(5), 652–661. https://doi.org/10.1080/02699052.2022.2042854
Dharm-Datta, S., & McLenaghan, J. (2013). Medical lessons learnt from the US and Canadian experience of treating combat casualties from Afghanistan and Iraq. Journal of the Royal Army Medical Corps, 159(2), Article 2. https://doi.org/10.1136/jramc-2013-000032
Diaz‐Arrastia, R., & Kenney, K. (2014). Epidemiology of traumatic brain injury. In P. E. Vos & R. Diaz‐Arrastia (Eds.), Traumatic Brain Injury (1st ed., pp. 181–191). Wiley. https://doi.org/10.1002/9781118656303.ch10
Dieter, J. N., & Engel, S. D. (2019). Traumatic Brain Injury and Posttraumatic Stress Disorder: Comorbid Consequences of War. Neuroscience Insights, 14, 1179069519892933. https://doi.org/10.1177/1179069519892933
Dismuke-Greer, C., Hirsch, S., Carlson, K., Pogoda, T., Nakase-Richardson, R., Bhatnagar, S., Eapen, B., Troyanskaya, M., Miles, S., Nolen, T., & Walker, W. C. (2020). Health Services Utilization, Health Care Costs, and Diagnoses by Mild Traumatic Brain Injury Exposure: A Chronic Effects of Neurotrauma Consortium Study. Archives of Physical Medicine and Rehabilitation, 101(10), 1720–1730. https://doi.org/10.1016/j.apmr.2020.06.008
Dollé, J.-P., Jaye, A., Anderson, S. A., Ahmadzadeh, H., Shenoy, V. B., & Smith, D. H. (2018). Newfound sex differences in axonal structure underlie differential outcomes from in vitro traumatic axonal injury. Experimental Neurology, 300, 121–134. https://doi.org/10.1016/j.expneurol.2017.11.001
Doroszkiewicz, C., Gold, D., Green, R., Tartaglia, M. C., Ma, J., & Tator, C. H. (2021). Anxiety, Depression, and Quality of Life: A Long-Term Follow-Up Study of Patients with Persisting Concussion Symptoms. Journal of Neurotrauma, 38(4), 493–505. https://doi.org/10.1089/neu.2020.7313
Eagle, S. R., Kontos, A. P., Collins, M. W., Mucha, A., Holland, C. L., Edelman, K., Benso, S., Schneider, W., Soose, R., & Okonkwo, D. O. (2021). Targeted Intervention Improves Symptoms and Impairments in Patients With Mild Traumatic Brain Injury With Chronic Symptom: A Prospective, Multiple Interventional Research Trial. Journal of Special Operations Medicine, 21(2), 61. https://doi.org/10.55460/AEY2-8NRI
Eapen, B. C., Bowles, A. O., Sall, J., Lang, A. E., Hoppes, C. W., Stout, K. C., Kretzmer, T., & Cifu, D. X. (2022). The management and rehabilitation of post-acute mild traumatic brain injury. Brain Injury, 36(5), 693–702. https://doi.org/10.1080/02699052.2022.2033848
Edri, I. E. (2024). Blast injury risks to humans within a military trench. Defence Technology, S2214914724000710. https://doi.org/10.1016/j.dt.2024.03.006
Edwards, K. A., Greer, K., Leete, J., Lai, C., Devoto, C., Qu, B.-X., Yarnell, A. M., Polejaeva, E., Dell, K. C., LoPresti, M. L., Walker, P., Wassermann, E. M., Carr, W., Stone, J. R., Ahlers, S. T., Vorn, R., Martin, C., & Gill, J. M. (2021). Neuronally-derived tau is increased in experienced breachers and is associated with neurobehavioral symptoms. Scientific Reports, 11(1), 19527. https://doi.org/10.1038/s41598-021-97913-0
Englert, R. M., Belding, J. N., & Thomsen, C. J. (2023). Self-Reported Symptoms in U.S. Marines Following Blast- and Impact-Related Concussion. Military Medicine, 188(7–8), e2118–e2125. https://doi.org/10.1093/milmed/usad026
Eonta, S. E., Kamimori, G. H., Wang, K. K. W., Carr, W., LaValle, C. R., Egnoto, M. J., & Tate, C. M. (2020). Case Study of a Breacher: Investigation of Neurotrauma Biomarker Levels, Self-reported Symptoms, and Functional MRI Analysis Before and After Exposure to Measured Low-Level Blast. Military Medicine, 185(3–4), e513–e517. https://doi.org/10.1093/milmed/usz185
Fann, J. R., Ribe, A. R., Pedersen, H. S., Fenger-Grøn, M., Christensen, J., Benros, M. E., & Vestergaard, M. (2018). Long-term risk of dementia among people with traumatic brain injury in Denmark: A population-based observational cohort study. The Lancet. Psychiatry, 5(5), 424–431. https://doi.org/10.1016/S2215-0366(18)30065-8
Fehily, B., & Fitzgerald, M. (2017). Repeated Mild Traumatic Brain Injury: Potential Mechanisms of Damage. Cell Transplantation, 26(7), 1131–1155. https://doi.org/10.1177/0963689717714092
Fleminger, S. (2008). Long-term psychiatric disorders after traumatic brain injury. European Journal of Anaesthesiology. Supplement, 42, 123–130. https://doi.org/10.1017/S0265021507003250
Fleminger, S., Oliver, D. L., Lovestone, S., Rabe-Hesketh, S., & Giora, A. (2003). Head injury as a risk factor for Alzheimer’s disease: The evidence 10 years on; a partial replication. Journal of Neurology, Neurosurgery, and Psychiatry, 74(7), 857–862. https://doi.org/10.1136/jnnp.74.7.857
Fordington, S., & Manford, M. (2020). A review of seizures and epilepsy following traumatic brain injury. Journal of Neurology, 267(10), Article 10. https://doi.org/10.1007/s00415-020-09926-w
Franke, L. M., Walker, W. C., Cifu, D. X., Ochs, A. L., & Lew, H. L. (2012). Sensorintegrative dysfunction underlying vestibular disorders after traumatic brain injury: A review. Journal of Rehabilitation Research and Development, 49(7), 985–994. https://doi.org/10.1682/jrrd.2011.12.0250
Frankini, E., Basile, E. J., Syed, F., Wei, O. C., & Toma, M. (2023). Understanding Traumatic Brain Injuries in Military Personnel: Investigating the Dynamic Interplay of the Cerebrospinal Fluid and Brain During Blasts. Cureus, 15(10), e46962. https://doi.org/10.7759/cureus.46962
Freeman, L. C., & Ting, J. P.-Y. (2016). The pathogenic role of the inflammasome in neurodegenerative diseases. Journal of Neurochemistry, 136 Suppl 1, 29–38. https://doi.org/10.1111/jnc.13217
French, L. M., Brickell, T. A., Lippa, S. M., Rogers, A. A., Cristaudo, K. E., Walker, T. T., Higgins, M., Bailie, J. M., Kennedy, J., Hungerford, L., & Lange, R. T. (2024). Clinical relevance of subthreshold PTSD versus full criteria PTSD following traumatic brain injury in U.S. service members and veterans. Journal of Affective Disorders, 358, 408–415. https://doi.org/10.1016/j.jad.2024.05.015
Gallo, V., McElvenny, D. M., Seghezzo, G., Kemp, S., Williamson, E., Lu, K., Mian, S., James, L., Hobbs, C., Davoren, D., Arden, N., Davies, M., Malaspina, A., Loosemore, M., Stokes, K., Cross, M., Crutch, S., Zetterberg, H., & Pearce, N. (2022). Concussion and long‐term cognitive function among rugby players—The BRAIN Study. Alzheimer’s & Dementia, 18(6), 1164–1176. https://doi.org/10.1002/alz.12455
Gallun, F. J., Diedesch, A. C., Kubli, L. R., Walden, T. C., Folmer, R. L., Lewis, S., ... Leek, M. R. (2012). Performance on tests of central auditory processing by individuals exposed to high-intensity blasts. Journal of Rehabilitation Research & Development, 49(7), 1005–1024.
Gallun, F. J., Papesh, M. A., & Lewis, M. S. (2017). Hearing complaints among veterans following traumatic brain injury. Brain Injury, 31(9), 1183-1187.
Garber, B. G., Rusu, C., & Zamorski, M. A. (2014). Deployment-related mild traumatic brain injury, mental health problems, and post-concussive symptoms in Canadian Armed Forces personnel. BMC Psychiatry, 14, 325. https://doi.org/10.1186/s12888-014-0325-5
Garber, B. G., Rusu, C., Zamorski, M. A., & Boulos, D. (2016). Occupational outcomes following mild traumatic brain injury in Canadian military personnel deployed in support of the mission in Afghanistan: A retrospective cohort study. BMJ Open, 6(5), Article 5. https://doi.org/10.1136/bmjopen-2015-010780
Gardner, R. C., Burke, J. F., Nettiksimmons, J., Goldman, S., Tanner, C. M., & Yaffe, K. (2015). Traumatic brain injury in later life increases risk for Parkinson disease. Annals of Neurology, 77(6), 987–995. https://doi.org/10.1002/ana.24396
Gardner, R. C., Burke, J. F., Nettiksimmons, J., Kaup, A., Barnes, D. E., & Yaffe, K. (2014). Dementia Risk After Traumatic Brain Injury vs Nonbrain Trauma: The Role of Age and Severity. JAMA Neurology, 71(12), 1490. https://doi.org/10.1001/jamaneurol.2014.2668
Gardner, R. C., Byers, A. L., Barnes, D. E., Li, Y., Boscardin, J., & Yaffe, K. (2018). Mild TBI and risk of Parkinson disease: A Chronic Effects of Neurotrauma Consortium Study. Neurology, 90(20), e1771–e1779. https://doi.org/10.1212/WNL.0000000000005522
Gavett, B. E., Stern, R. A., Cantu, R. C., Nowinski, C. J., & McKee, A. C. (2010). Mild traumatic brain injury: A risk factor for neurodegeneration. Alzheimer’s Research & Therapy, 2(3), Article 3. https://doi.org/10.1186/alzrt42
Giordano, K. R., Rojas-Valencia, L. M., Bhargava, V., & Lifshitz, J. (2020). Beyond Binary: Influence of Sex and Gender on Outcome after Traumatic Brain Injury. Journal of Neurotrauma, 37(23), 2454–2459. https://doi.org/10.1089/neu.2020.7230
Glikstein, R., Melkus, G., Portela de Oliveira, E., Brun‐Vergara, M. L., Schwarz, B. A., Ramsay, T., ... & Skinner, C. (2025). Five‐Year Serial Brain MRI Analysis of Military Members Exposed to Chronic Sub‐Concussive Overpressures. Journal of Magnetic Resonance Imaging, 61(1), 415-423.
Gu, W., Groves, L. L., & McClellan, S. F. (2024). Patterns of concomitant traumatic brain injury and ocular trauma in US service members. Trauma Surgery & Acute Care Open, 9(1), e001313. https://doi.org/10.1136/tsaco-2023-001313
Gupta, R., & Sen, N. (2016). Traumatic brain injury: A risk factor for neurodegenerative diseases. Reviews in the Neurosciences, 27(1), Article 1. https://doi.org/10.1515/revneuro-2015-0017
Gupte, R., Brooks, W., Vukas, R., Pierce, J., & Harris, J. (2019). Sex Differences in Traumatic Brain Injury: What We Know and What We Should Know. Journal of Neurotrauma, 36(22), 3063–3091. https://doi.org/10.1089/neu.2018.6171
Haarbauer-Krupa, J., Pugh, M. J., Prager, E. M., Harmon, N., Wolfe, J., & Yaffe, K. (2021). Epidemiology of Chronic Effects of Traumatic Brain Injury. Journal of Neurotrauma, 38(23), 3235–3247. https://doi.org/10.1089/neu.2021.0062
Hai, T., Agimi, Y., & Stout, K. (2023). Prevalence of Comorbidities in Active and Reserve Service Members Pre and Post Traumatic Brain Injury, 2017-2019. Military Medicine, 188(1–2), e270–e277. https://doi.org/10.1093/milmed/usab342
Hammond, F. M., Corrigan, J. D., Ketchum, J. M., Malec, J. F., Dams-OʼConnor, K., Hart, T., Novack, T. A., Bogner, J., Dahdah, M. N., & Whiteneck, G. G. (2019). Prevalence of Medical and Psychiatric Comorbidities Following Traumatic Brain Injury. The Journal of Head Trauma Rehabilitation, 34(4), Article 4. https://doi.org/10.1097/HTR.0000000000000465
Hardy, M. S., Kennedy, J. E., & Cooper, D. B. (2020). Patient Attribution of Posttraumatic Symptoms to Brain Injury Versus PTSD in Military-Related Mild TBI. The Journal of Neuropsychiatry and Clinical Neurosciences, 32(3), 252–258. https://doi.org/10.1176/appi.neuropsych.19090202
Harris, M., Nguyen, A., Brown, N. J., Picton, B., Gendreau, J., Bui, N., Sahyouni, R., & Lin, H. W. (2024). Mild Traumatic Brain Injury and the Auditory System: An Overview of the Mechanisms, Clinical Presentations, and Current Diagnostic Modalities. Journal of Neurotrauma. https://doi.org/10.1089/neu.2023.0059
Harrison-Felix, C., Sevigny, M., Beaulieu, C. L., Callender, L., Dams-O’Connor, K., Hammond, F. M., Hanks, R., Ketchum, J. M., Martin, A. M., Marwitz, J. H., Peckham, M., Rabinowitz, A. R., Sander, A. M., Sterling, A., Walker, W. C., Nakase-Richardson, R., & Hoffman, J. M. (2024). Characterization and Treatment of Chronic Pain After Traumatic Brain Injury-Comparison of Characteristics Between Individuals With Current Pain, Past Pain, and No Pain: A NIDILRR and VA TBI Model Systems Collaborative Project. The Journal of Head Trauma Rehabilitation, 39(1), 5–17. https://doi.org/10.1097/HTR.0000000000000910
Haynes, Z. A., Stewart, I. J., Poltavskiy, E. A., Holley, A. B., Janak, J. C., Howard, J. T., Watrous, J., Walker, L. E., Wickwire, E. M., Werner, K., Zarzabal, L. A., Sim, A., Gundlapalli, A., & Collen, J. F. (2022). Obstructive sleep apnea among survivors of combat-related traumatic injury: A retrospective cohort study. Journal of Clinical Sleep Medicine: JCSM: Official Publication of the American Academy of Sleep Medicine, 18(1), 171–179. https://doi.org/10.5664/jcsm.9530
Helmick, K. M., Spells, C. A., Malik, S. Z., Davies, C. A., Marion, D. W., & Hinds, S. R. (2015). Traumatic brain injury in the US military: Epidemiology and key clinical and research programs. Brain Imaging and Behavior, 9(3), 358–366. https://doi.org/10.1007/s11682-015-9399-z
Henion, A. K., Wang, C.-P., Amuan, M., Altalib, H. H., Towne, A. R., Hinds, S. R., Baca, C., LaFrance, W. C., Van Cott, A. C., Kean, J., Roghani, A., Kennedy, E., Panahi, S., & Pugh, M. J. V. (2023). Role of Deployment History on the Association Between Epilepsy and Traumatic Brain Injury in Post-9/11 Era US Veterans. Neurology, 101(24), e2571–e2584. https://doi.org/10.1212/WNL.0000000000207943
Hoge, C. W., & Castro, C. A. (2014). Treatment of Generalized War-Related Health Concerns: Placing TBI and PTSD in Context. JAMA, 312(16), 1685. https://doi.org/10.1001/jama.2014.6670
Hoge, C. W., McGurk, D., Thomas, J. L., Cox, A. L., Engel, C. C., & Castro, C. A. (2008). Mild Traumatic Brain Injury in U.S. Soldiers Returning from Iraq. New England Journal of Medicine, 358(5), 453–463. https://doi.org/10.1056/NEJMoa072972
Holcomb, E. M., Schwartz, D. J., McCarthy, M., Thomas, B., Barnett, S. D., & Nakase-Richardson, R. (2016). Incidence, Characterization, and Predictors of Sleep Apnea in Consecutive Brain Injury Rehabilitation Admissions. Journal of Head Trauma Rehabilitation, 31(2), 82–100. https://doi.org/10.1097/HTR.0000000000000230
Hong, Z.-J., Firek, M., Zachary, B., Mörs, K., Schindler, C., Marzi, I., Yu, J.-C., & Coimbra, R. (2022). The effect of age and sex on outcomes following isolated moderate to severe traumatic brain injury. European Journal of Trauma and Emergency Surgery: Official Publication of the European Trauma Society, 48(2), 871–880. https://doi.org/10.1007/s00068-020-01491-1
Hoover, E. C., Souza, P. E., & Gallun, F. J. (2015). Competing Views on Abnormal Auditory Results After Mild Traumatic Brain Injury. Perspectives on Hearing and Hearing Disorders Research and Diagnostics, 19(1), 12. https://doi.org/10.1044/hhd19.1.12
Hoover, E., Souza, P. E., & Gallun, F. J. (2014). Degraded temporal processing after traumatic brain injury. The Journal of the Acoustical Society of America, 135(4_Supplement), 2166–2166. https://doi.org/10.1121/1.4877039
Howlett, J. R., Nelson, L. D., & Stein, M. B. (2022). Mental Health Consequences of Traumatic Brain Injury. Biological Psychiatry, 91(5), 413–420. https://doi.org/10.1016/j.biopsych.2021.09.024
Hughes, C. K., Thapa, S., Theodoroff, S. M., Carlson, K. F., Schultz, J. D., Grush, L. D., & Reavis, K. M. (2024). Military and Nonmilitary TBI Associations with Hearing Loss and Self-Reported Hearing Difficulty among Active-Duty Service Members and Veterans. Otology & Neurotology: Official Publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology, 45(3), e147–e155. https://doi.org/10.1097/MAO.0000000000004103
Hume, C. H., Wright, B. J., & Kinsella, G. J. (2022). Systematic Review and Meta-analysis of Outcome after Mild Traumatic Brain Injury in Older People. Journal of the International Neuropsychological Society, 28(7), 736–755. https://doi.org/10.1017/S1355617721000795
Hunfalvay, M., Murray, N. P., Creel, W. T., & Carrick, F. R. (2022). Long-term effects of low-level blast exposure and high-caliber weapons use in military special operators. Brain sciences, 12(5), 679.
Institute of Medicine (US) Committee on Gulf War and Health: Brain Injury in Veterans and Long-Term Health Outcomes. (2008). Gulf War and Health: Volume 7: Long-Term Consequences of Traumatic Brain Injury. National Academies Press (US). http://www.ncbi.nlm.nih.gov/books/NBK214701/
Ivins, B., Risling, M., Wisén, N., Schwab, K., & Rostami, E. (2023). Mild Traumatic Brain Injury in the Maturing Brain: An Investigation of Symptoms and Cognitive Performance in Soldiers Returning From Afghanistan and Iraq. The Journal of Head Trauma Rehabilitation. https://doi.org/10.1097/HTR.0000000000000919
Jacks, D. E., Tereshko, W. D., & Moore, J. B. (2022). Diagnosed Concussion and Undiagnosed Head Trauma Is Associated With Long-Term Concussion-Related Symptoms in Former College Football Players. American Journal of Physical Medicine & Rehabilitation, 101(3), 250–254. https://doi.org/10.1097/PHM.0000000000001782
Jafari, S., Etminan, M., Aminzadeh, F., & Samii, A. (2013). Head injury and risk of Parkinson disease: A systematic review and meta-analysis. Movement Disorders: Official Journal of the Movement Disorder Society, 28(9), 1222–1229. https://doi.org/10.1002/mds.25458
Jannace, K. C., Pompeii, L., Gimeno Ruiz de Porras, D., Perkison, W. B., Yamal, J.-M., Trone, D. W., & Rull, R. P. (2023). Occupation and Risk of Traumatic Brain Injury in the Millennium Cohort Study. Military Medicine, 188(9–10), e3057–e3065. https://doi.org/10.1093/milmed/usac035
Jannace, K. C., Pompeii, L., Gimeno Ruiz de Porras, D., Perkison, W. B., Yamal, J.-M., Trone, D. W., & Rull, R. P. (2024). Lifetime Traumatic Brain Injury and Risk of Post-Concussive Symptoms in the Millennium Cohort Study. Journal of Neurotrauma, 41(5–6), 613–622. https://doi.org/10.1089/neu.2022.0213
Johnson, V. E., Stewart, W., Arena, J. D., & Smith, D. H. (2017). Traumatic Brain Injury as a Trigger of Neurodegeneration. Advances in Neurobiology, 15, 383–400. https://doi.org/10.1007/978-3-319-57193-5_15
Jones, C., Ramsey, K., Beydoun, H. A., & Johnstone, B. (2023). Neuropsychological deficit profiles for service members with mild traumatic brain injury. Brain Injury, 37(9), 1116–1125. https://doi.org/10.1080/02699052.2023.2209739
Kamimori, G. H., LaValle, C. R., Eonta, S. E., Carr, W., Tate, C., & Wang, K. K. W. (2018). Longitudinal Investigation of Neurotrauma Serum Biomarkers, Behavioral Characterization, and Brain Imaging in Soldiers Following Repeated Low-Level Blast Exposure (New Zealand Breacher Study). Military Medicine, 183(suppl_1), 28–33. https://doi.org/10.1093/milmed/usx186
Kamimori, G. H., Reilly, L. A., LaValle, C. R., & Olaghere Da Silva, U. B. (2017). Occupational overpressure exposure of breachers and military personnel. Shock Waves, 27, 837–847. https://doi.org/10.1007/s00193-017-0738-4
Kanefsky, R., Motamedi, V., Mithani, S., Mysliwiec, V., Gill, J. M., & Pattinson, C. L. (2019). Mild traumatic brain injuries with loss of consciousness are associated with increased inflammation and pain in military personnel. Psychiatry Research, 279, 34–39. https://doi.org/10.1016/j.psychres.2019.07.001
Kaplan, G. B., Leite-Morris, K. A., Wang, L., Rumbika, K. K., Heinrichs, S. C., Zeng, X., Wu, L., Arena, D. T., & Teng, Y. D. (2018). Pathophysiological Bases of Comorbidity: Traumatic Brain Injury and Post-Traumatic Stress Disorder. Journal of Neurotrauma, 35(2), Article 2. https://doi.org/10.1089/neu.2016.4953
Kempuraj, D., & Mohan, R. R. (2024). Blast injury: Impact to the cornea. Experimental Eye Research, 244, 109915. https://doi.org/10.1016/j.exer.2024.109915
Kenborg, L., Rugbjerg, K., Lee, P.-C., Ravnskjær, L., Christensen, J., Ritz, B., & Lassen, C. F. (2015). Head injury and risk for Parkinson disease: Results from a Danish case-control study. Neurology, 84(11), 1098–1103. https://doi.org/10.1212/WNL.0000000000001362
Kennedy, E., Ozmen, M., Bouldin, E. D., Panahi, S., Mobasher, H., Troyanskaya, M., Martindale, S. L., Merritt, V. C., O’Neil, M., Sponheim, S. R., Remigio-Baker, R. A., Presson, A., Swan, A. A., Werner, J. K., Greene, T. H., Wilde, E. A., Tate, D. F., Walker, W. C., & Pugh, M. J. (2024). Phenotyping Depression After Mild Traumatic Brain Injury: Evaluating the Impact of Multiple Injury, Gender, and Injury Context. Journal of Neurotrauma, 41(7–8), 924–933. https://doi.org/10.1089/neu.2023.0381
Kennedy, J. E., Lu, L. H., Reid, M. W., Leal, F. O., & Cooper, D. B. (2019). Correlates of Depression in U.S. Military Service Members With a History of Mild Traumatic Brain Injury. Military Medicine, 184(Supplement_1), 148–154. https://doi.org/10.1093/milmed/usy321
Kim, S., Ollinger, J., Song, C., Raiciulescu, S., Seenivasan, S., Wolfgang, A., Kim, H., Werner, J. K., & Yeh, P.-H. (2024). White Matter Alterations in Military Service Members With Remote Mild Traumatic Brain Injury. JAMA Network Open, 7(4), e248121. https://doi.org/10.1001/jamanetworkopen.2024.8121
Kim, S. Y., Yeh, P.-H., Ollinger, J. M., Morris, H. D., Hood, M. N., Ho, V. B., & Choi, K. H. (2023). Military-related mild traumatic brain injury: Clinical characteristics, advanced neuroimaging, and molecular mechanisms. Translational Psychiatry, 13(1), 289. https://doi.org/10.1038/s41398-023-02569-1
Knobloch, L. K., & Abendschein, B. (2024). Traumatic brain injury and relationship distress during military deployment and reunion. Family Relations, 73(1), 424–440. https://doi.org/10.1111/fare.12849
Kocik, V. I., Dengler, B. A., Rizzo, J. A., Ma Moran, M., Willis, A. M., April, M. D., & Schauer, S. G. (2024). A Narrative Review of Existing and Developing Biomarkers in Acute Traumatic Brain Injury for Potential Military Deployed Use. Military Medicine, 189(5–6), e1374–e1380. https://doi.org/10.1093/milmed/usad433
Kong, L.-Z., Zhang, R.-L., Hu, S.-H., & Lai, J.-B. (2022). Military traumatic brain injury: A challenge straddling neurology and psychiatry. Military Medical Research, 9(1), 2. https://doi.org/10.1186/s40779-021-00363-y
Kulinski, D., Carr, W., Garfield, B. A., Salib, J., Dirks, C., Sheffield, B., & Brungart, D. S. (2023). Acute Hearing Deficits associated with Weapons Exposure in Section 734 Blast Overpressure Study (BOS). Military Medicine, 188(Suppl 6), 666–673. https://doi.org/10.1093/milmed/usad299
Kumar, R. G., Klyce, D., Nakase-Richardson, R., Pugh, M. J., Walker, W. C., & Dams-O’Connor, K. (2023). Associations of Military Service History and Health Outcomes in the First Five Years After Traumatic Brain Injury. Journal of Neurotrauma, 40(11–12), 1173–1186. https://doi.org/10.1089/neu.2022.0340
Kurowski, B. G., Treble-Barna, A., Pitzer, A. J., Wade, S. L., Martin, L. J., Chima, R. S., & Jegga, A. (2017). Applying Systems Biology Methodology To Identify Genetic Factors Possibly Associated with Recovery after Traumatic Brain Injury. Journal of Neurotrauma, 34(14), 2280–2290. https://doi.org/10.1089/neu.2016.4856
Lange, R. T., French, L. M., Lippa, S. M., Gillow, K. C., Bailie, J. M., Turner, S. M., Hungerford, L. D., & Brickell, T. A. (2024). Convergent and Discriminant Validity of the Blast Exposure Threshold Survey in United States Military Service Members and Veterans. Journal of Neurotrauma, 41(7–8), 934–941. https://doi.org/10.1089/neu.2023.0379
Larson-Dupuis, C., Léveillé, E., Desjardins, M., Jodoin, M., Bourassa, M.-È., Bergeron, H., Beaulieu, C., Carrier, J., Pepin, V., & De Beaumont, L. (2020). Subtle long-term cognitive effects of a single mild traumatic brain injury and the impact of a three-month aerobic exercise intervention. The Journal of Sports Medicine and Physical Fitness, 61(1). https://doi.org/10.23736/S0022-4707.20.10918-6
LaValle, C. R., Carr, W. S., Egnoto, M. J., Misistia, A. C., Salib, J. E., Ramos, A. N., & Kamimori, G. H. (2019). Neurocognitive Performance Deficits Related to Immediate and Acute Blast Overpressure Exposure. Frontiers in Neurology, 10, 949. https://doi.org/10.3389/fneur.2019.00949
Le, M., Šarkić, B., & Anderson, R. (2024). Prevalence of tinnitus following non-blast related traumatic brain injury: A systematic review of literature. Brain Injury, 1–10. https://doi.org/10.1080/02699052.2024.2353798
Lee, Y.-K., Hou, S.-W., Lee, C.-C., Hsu, C.-Y., Huang, Y.-S., & Su, Y.-C. (2013). Increased risk of dementia in patients with mild traumatic brain injury: A nationwide cohort study. PloS One, 8(5), Article 5. https://doi.org/10.1371/journal.pone.0062422
Leiva-Salinas, C., Singh, A., Layfield, E., Flors, L., & Patrie, J. T. (2023). Early Brain Amyloid Accumulation at PET in Military Instructors Exposed to Subconcussive Blast Injuries. Radiology, 307(5), e221608. https://doi.org/10.1148/radiol.221608
Lennon, M. J., Brooker, H., Creese, B., Thayanandan, T., Rigney, G., Aarsland, D., Hampshire, A., Ballard, C., Corbett, A., & Raymont, V. (2023). Lifetime Traumatic Brain Injury and Cognitive Domain Deficits in Late Life: The PROTECT-TBI Cohort Study. Journal of Neurotrauma, 40(13–14), 1423–1435. https://doi.org/10.1089/neu.2022.0360
Levin, H. S., Temkin, N. R., Barber, J., Nelson, L. D., Robertson, C., Brennan, J., Stein, M. B., Yue, J. K., Giacino, J. T., McCrea, M. A., Diaz-Arrastia, R., Mukherjee, P., Okonkwo, D. O., Boase, K., Markowitz, A. J., Bodien, Y., Taylor, S., Vassar, M. J., Manley, G. T., … Zafonte, R. (2021). Association of Sex and Age With Mild Traumatic Brain Injury-Related Symptoms: A TRACK-TBI Study. JAMA Network Open, 4(4), e213046. https://doi.org/10.1001/jamanetworkopen.2021.3046
Li, Y., Yang, Z., Liu, B., Valdez, C., Chavko, M., & Cancio, L. C. (2019). Low-Level Primary Blast Induces Neuroinflammation and Neurodegeneration in Rats. Military Medicine, 184(Suppl 1), 265–272. https://doi.org/10.1093/milmed/usy330
Lin, S.-Y., Chen, W., Harnod, T., Lin, C.-L., Hsu, W.-H., Lin, C.-C., Chang, Y.-L., Wang, I.-K., & Kao, C.-H. (2019). Sleep apnea and risk of traumatic brain injury and associated mortality and healthcare costs: A population-based cohort study. Annals of Translational Medicine, 7(22), 644–644. https://doi.org/10.21037/atm.2019.10.88
Lindberg, M. A., Moy Martin, E. M., & Marion, D. W. (2022). Military Traumatic Brain Injury: The History, Impact, and Future. Journal of Neurotrauma, 39(17–18), Article 17–18. https://doi.org/10.1089/neu.2022.0103
Lippa, S. M., Bailie, J. M., French, L. M., Brickell, T. A., & Lange, R. T. (2024). Lifetime blast exposure is not related to cognitive performance or psychiatric symptoms in US military personnel. The Clinical Neuropsychologist, 1–23. https://doi.org/10.1080/13854046.2024.2328881
Lippa, S. M., Yeh, P.-H., Kennedy, J. E., Bailie, J. M., Ollinger, J., Brickell, T. A., French, L. M., & Lange, R. T. (2023). Lifetime Blast Exposure Is Not Related to White Matter Integrity in Service Members and Veterans With and Without Uncomplicated Mild Traumatic Brain Injury. Neurotrauma Reports, 4(1), 827–837. https://doi.org/10.1089/neur.2023.0043
Littlefield, P. D., Pinto, R. L., Burrows, H. L., & Brungart, D. S. (2016). The Vestibular Effects of Repeated Low-Level Blasts. Journal of Neurotrauma, 33(1), 71–81. https://doi.org/10.1089/neu.2014.3824
Lo, R. Y., & Tanner, C. M. (2014). Parkinson’s Disease; Epidemiology. In Encyclopedia of the Neurological Sciences (pp. 833–839). Elsevier. https://doi.org/10.1016/B978-0-12-385157-4.00605-9
LoBue, C., Munro, C., Schaffert, J., Didehbani, N., Hart, J., Batjer, H., & Cullum, C. M. (2019). Traumatic Brain Injury and Risk of Long-Term Brain Changes, Accumulation of Pathological Markers, and Developing Dementia: A Review. Journal of Alzheimer’s Disease: JAD, 70(3), Article 3. https://doi.org/10.3233/JAD-190028
Loignon, A., Ouellet, M.-C., & Belleville, G. (2020). A Systematic Review and Meta-analysis on PTSD Following TBI Among Military/Veteran and Civilian Populations. The Journal of Head Trauma Rehabilitation, 35(1), E21–E35. https://doi.org/10.1097/HTR.0000000000000514
Long, Y.-R., Zhao, K., Zhang, F.-C., Li, Y., Wang, J.-W., Niu, H.-Q., & Lei, J. (2024). Trends and hotspots in research of traumatic brain injury from 2000 to 2022: A bibliometric study. Neurochemistry International, 172, 105646. https://doi.org/10.1016/j.neuint.2023.105646
Mac Donald, C. L., Barber, J., Patterson, J., Johnson, A. M., Parsey, C., Scott, B., Fann, J. R., & Temkin, N. R. (2021). Comparison of Clinical Outcomes 1- and 5-Years Post-Injury Following Combat Concussion. Neurology, 96(3). https://doi.org/10.1212/WNL.0000000000011089
MacGregor, A. J., Dougherty, A. L., & Galarneau, M. R. (2011). Injury-specific correlates of combat-related traumatic brain injury in Operation Iraqi Freedom. The Journal of Head Trauma Rehabilitation, 26(4), Article 4. https://doi.org/10.1097/HTR.0b013e3181e94404
Madsen, T., Erlangsen, A., Orlovska, S., Mofaddy, R., Nordentoft, M., & Benros, M. E. (2018). Association Between Traumatic Brain Injury and Risk of Suicide. JAMA, 320(6), Article 6. https://doi.org/10.1001/jama.2018.10211
Marcolini, S., Rojczyk, P., Seitz-Holland, J., Koerte, I. K., Alosco, M. L., Bouix, S., & Department of Defense Alzheimer’s Disease Neuroimaging Initiative. (2023). Posttraumatic Stress and Traumatic Brain Injury: Cognition, Behavior, and Neuroimaging Markers in Vietnam Veterans. Journal of Alzheimer’s Disease: JAD, 95(4), 1427–1448. https://doi.org/10.3233/JAD-221304
Marzolla, M. C., Wijenberg, M., Stapert, S., Hurks, P., Schepers, J., & van Heugten, C. (2023). Hypersensitivity to Noise and Light Over 1 Year After Mild Traumatic Brain Injury: A Longitudinal Study on Self-Reported Hypersensitivity and Its Influence on Long-Term Anxiety, Depression, and Quality of Life. Journal of Head Trauma Rehabilitation, 38(3), 259–267. https://doi.org/10.1097/HTR.0000000000000813
Massaad, E., & Kiapour, A. (2024). Long-Term Health Outcomes of Traumatic Brain Injury in Veterans. JAMA Network Open, 7(2), e2354546. https://doi.org/10.1001/jamanetworkopen.2023.54546
Mavroudis, I., Ciobica, A., Bejenariu, A. C., Dobrin, R. P., Apostu, M., Dobrin, I., & Balmus, I.-M. (2024). Cognitive Impairment following Mild Traumatic Brain Injury (mTBI): A Review. Medicina (Kaunas, Lithuania), 60(3), 380. https://doi.org/10.3390/medicina60030380
McCrea, M. A., Martinez, K. A., Janecek, J. K., Brett, B., & Nelson, L. D. (2024). Traumatic brain injury and persistent postconcussion symptoms. In M. W. Parsons & M. M. Braun (Eds.), Clinical neuropsychology: A pocket handbook for assessment (4th ed.). (pp. 410–434). American Psychological Association. https://doi.org/10.1037/0000383-016
McDonald, S. D., Walker, W. C., Cusack, S. E., Yoash-Gantz, R. E., Pickett, T. C., Cifu, D. X., Mid-Atlantic Mirecc Workgroup, V., & Tupler, L. A. (2021). Health symptoms after war zone deployment-related mild traumatic brain injury: Contributions of mental disorders and lifetime brain injuries. Brain Injury, 35(11), 1338–1348. https://doi.org/10.1080/02699052.2021.1959058
McInnes, K., Friesen, C. L., MacKenzie, D. E., Westwood, D. A., & Boe, S. G. (2017). Mild Traumatic Brain Injury (mTBI) and chronic cognitive impairment: A scoping review. PloS One, 12(4), e0174847. https://doi.org/10.1371/journal.pone.0174847
McKee, A. C., & Robinson, M. E. (2014). Military-related traumatic brain injury and neurodegeneration. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 10(3 Suppl), Article 3 Suppl. https://doi.org/10.1016/j.jalz.2014.04.003
Merritt, V. C., Gasperi, M., Yim, J., Ly, M. T., & Chanfreau-Coffinier, C. (2024). Exploring Interactions Between Traumatic Brain Injury History and Gender on Medical Comorbidities in Military Veterans: An Epidemiological Analysis in the VA Million Veteran Program. Journal of Neurotrauma, 41(5–6), Article 5–6. https://doi.org/10.1089/neu.2023.0174
Metti, A., Schwab, K., Finkel, A., Pazdan, R., Brenner, L., Cole, W., Terrio, H., & Scher, A. I. (2020). Posttraumatic vs nontraumatic headaches: A phenotypic analysis in a military population. Neurology, 94(11). https://doi.org/10.1212/WNL.0000000000008935
Meyer, K. S., Marion, D. W., Coronel, H., & Jaffee, M. S. (2010). Combat-related traumatic brain injury and its implications to military healthcare. The Psychiatric Clinics of North America, 33(4), Article 4. https://doi.org/10.1016/j.psc.2010.08.007
Mikolic, A., Groeniger, J. O., Zeldovich, M., Wilson, L., van Lennep, J. R., van Klaveren, D., Polinder, S., & Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) Participants and Investigators. (2021). Explaining Outcome Differences between Men and Women following Mild Traumatic Brain Injury. Journal of Neurotrauma, 38(23), Article 23. https://doi.org/10.1089/neu.2021.0116
Mikolić, A., van Klaveren, D., Groeniger, J. O., Wiegers, E. J. A., Lingsma, H. F., Zeldovich, M., von Steinbüchel, N., Maas, A. I. R., Roeters van Lennep, J. E., Polinder, S., & CENTER-TBI Participants and Investigators. (2021). Differences between Men and Women in Treatment and Outcome after Traumatic Brain Injury. Journal of Neurotrauma, 38(2), Article 2. https://doi.org/10.1089/neu.2020.7228
Miller, R. M., Dunn, J. A., O’Beirne, G. A., Whitney, S. L., & Snell, D. L. (2024). Relationships between vestibular issues, noise sensitivity, anxiety and prolonged recovery from mild traumatic brain injury among adults: A scoping review. Brain Injury, 38(8), 607–619. https://doi.org/10.1080/02699052.2024.2337905
Mitra, B., Beck, B., Dipnall, J. F., Ponsford, J., Gabbe, B., & Cameron, P. A. (2023). Long-term outcomes of major trauma patients with concussion. Injury, 54(1), 75–81. https://doi.org/10.1016/j.injury.2022.07.048
Modica, C. M., Johnson, B. R., Zalewski, C., King, K., Brewer, C., King, J. E., Yarnell, A. M., LoPresti, M. L., Walker, P. B., Dell, K. C., Polejaeva, E., Quick, A., Arnold, B., Wassermann, E. M., Stone, J. R., Ahlers, S. T., & Carr, W. (2020). Hearing Loss and Irritability Reporting Without Vestibular Differences in Explosive Breaching Professionals. Frontiers in Neurology, 11, 588377. https://doi.org/10.3389/fneur.2020.588377
Mollayeva, T., Mollayeva, S., Pacheco, N., & Colantonio, A. (2021). Systematic Review of Sex and Gender Effects in Traumatic Brain Injury: Equity in Clinical and Functional Outcomes. Frontiers in Neurology, 12, 678971. https://doi.org/10.3389/fneur.2021.678971
Mucha, A., Fedor, S., & DeMarco, D. (2018). Vestibular dysfunction and concussion. Handbook of Clinical Neurology, 158, 135–144. https://doi.org/10.1016/B978-0-444-63954-7.00014-8
Munivenkatappa, A., Agrawal, A., Shukla, D. P., Kumaraswamy, D., & Devi, B. I. (2016). Traumatic brain injury: Does gender influence outcomes? International Journal of Critical Illness and Injury Science, 6(2), Article 2. https://doi.org/10.4103/2229-5151.183024
Nakase-Richardson, R., Dahdah, M. N., Almeida, E., Ricketti, P., Silva, M. A., Calero, K., Magalang, U., & Schwartz, D. J. (2020). Concordance between current American Academy of Sleep Medicine and Centers for Medicare and Medicare scoring criteria for obstructive sleep apnea in hospitalized persons with traumatic brain injury: A VA TBI Model System study. Journal of Clinical Sleep Medicine, 16(6), 879–888. https://doi.org/10.5664/jcsm.8352
Nakashima, A., Vartanian, O., Rhind, S. G., King, K., Tenn, C., & Jetly, C. R. (2022). Repeated Occupational Exposure to Low-level Blast in the Canadian Armed Forces: Effects on Hearing, Balance, and Ataxia. Military Medicine, 187(1–2), Article 1–2. https://doi.org/10.1093/milmed/usaa439
National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Health Care Services; Committee on the Review of the Department of Veterans Affairs Examinations for Traumatic Brain Injury. (2019). Evaluation of the Disability Determination Process for Traumatic Brain Injury in Veterans. National Academies Press (US). http://www.ncbi.nlm.nih.gov/books/NBK542602/
Nelson, C., St Cyr, K., Weiser, M., Gifford, S., Gallimore, J., & Morningstar, A. (2011). Knowledge gained from the Brief Traumatic Brain Injury Screen—Implications for treating Canadian military personnel. Military Medicine, 176(2), Article 2. https://doi.org/10.7205/milmed-d-10-00252
Niemeier, J. P., Marwitz, J. H., Lesher, K., Walker, W. C., & Bushnik, T. (2007). Gender differences in executive functions following traumatic brain injury. Neuropsychological Rehabilitation, 17(3), Article 3. https://doi.org/10.1080/09602010600814729
O’Brien, M. C., Disner, S. G., Davenport, N. D., & Sponheim, S. R. (2024). The relationship between blast-related mild traumatic brain injury and executive function is moderated by white matter integrity. Brain Imaging and Behavior. https://doi.org/10.1007/s11682-024-00864-z
O’Connor, F. G., Schoomaker, E. B., Smith, D. C., Borden Institute (U.S.), & US Army Medical Department Center and School. (2019). Fundamentals of military medicine (First edition, 1–1 online resource (xxvi, 641, xxvii-lii pages): illustrations, color maps, portraits.). Office of The Surgeon General, Borden Institute, US Army Medical Department Center and School, Health Readiness Center of Excellence; WorldCat.
Oleksiak, M., Smith, B. M., St Andre, J. R., Caughlan, C. M., & Steiner, M. (2012). Audiological issues and hearing loss among Veterans with mild traumatic brain injury. Journal of Rehabilitation Research and Development, 49(7), 995–1004. https://doi.org/10.1682/jrrd.2011.01.0001
Olsen, C. M., & Corrigan, J. D. (2022). Does Traumatic Brain Injury Cause Risky Substance Use or Substance Use Disorder? Biological Psychiatry, 91(5), Article 5. https://doi.org/10.1016/j.biopsych.2021.07.013
O’Neil, M. E., Carlson, K., Storzbach, D., Brenner, L., Freeman, M., Quiñones, A., Motu’apuaka, M., Ensley, M., & Kansagara, D. (2013). Complications of Mild Traumatic Brain Injury in Veterans and Military Personnel: A Systematic Review. Department of Veterans Affairs (US). http://www.ncbi.nlm.nih.gov/books/NBK189785/
Orman, J. A. L., Selassie, A. W., Perdue, C. L., Thurman, D. J., & Kraus, J. F. (2012). Surveillance of traumatic brain injury. Injury Research: Theories, Methods, and Approaches, 61–85.
O’Sullivan, M., Glorney, E., Sterr, A., Oddy, M., & da Silva Ramos, S. (2015). Traumatic brain injury and violent behavior in females: A systematic review. Aggression and Violent Behavior, 25, 54–64. https://doi.org/10.1016/j.avb.2015.07.006
Otis, J. D., McGlinchey, R., Vasterling, J. J., & Kerns, R. D. (2011). Complicating Factors Associated with Mild Traumatic Brain Injury: Impact on Pain and Posttraumatic Stress Disorder Treatment. Journal of Clinical Psychology in Medical Settings, 18(2), 145–154. https://doi.org/10.1007/s10880-011-9239-2
Pagulayan, K. F., Rau, H., Madathil, R., Werhane, M., Millard, S. P., Petrie, E. C., Parmenter, B., Peterson, S., Sorg, S., Hendrickson, R., Mayer, C., Meabon, J. S., Huber, B. R., Raskind, M., Cook, D. G., & Peskind, E. R. (2018). Retrospective and Prospective Memory Among OEF/OIF/OND Veterans With a Self-Reported History of Blast-Related mTBI. Journal of the International Neuropsychological Society, 24(4), 324–334. https://doi.org/10.1017/S1355617717001217
Palacios, E. M., Yuh, E. L., Mac Donald, C. L., Bourla, I., Wren-Jarvis, J., Sun, X., Vassar, M. J., Diaz-Arrastia, R., Giacino, J. T., Okonkwo, D. O., Robertson, C. S., Stein, M. B., Temkin, N., McCrea, M. A., Levin, H. S., Markowitz, A. J., Jain, S., Manley, G. T., Mukherjee, P., … Zafonte, R. (2022). Diffusion Tensor Imaging Reveals Elevated Diffusivity of White Matter Microstructure that Is Independently Associated with Long-Term Outcome after Mild Traumatic Brain Injury: A TRACK-TBI Study. Journal of Neurotrauma, 39(19–20), 1318–1328. https://doi.org/10.1089/neu.2021.0408
Panenka, W. J., Gardner, A. J., Dretsch, M. N., Crynen, G. C., Crawford, F. C., & Iverson, G. L. (2017). Systematic Review of Genetic Risk Factors for Sustaining a Mild Traumatic Brain Injury. Journal of Neurotrauma, 34(13), 2093–2099. https://doi.org/10.1089/neu.2016.4833
Papesh, M. A., & Koerner, T. (2024). Clinical Gaps-in-Noise Measures in Blast-Exposed Veterans: Associations with Electrophysiological and Behavioral Responses. Seminars in Hearing, 45(1), 83–100. https://doi.org/10.1055/s-0043-1770139
Patil, R. R. (2022). Epidemiology of Parkinson’s Disease—Current Understanding of Causation and Risk Factors. In S. P. Arjunan & D. K. Kumar (Eds.), Techniques for Assessment of Parkinsonism for Diagnosis and Rehabilitation (pp. 31–48). Springer Singapore. https://doi.org/10.1007/978-981-16-3056-9_3
Payami, H., Cohen, G., Murchison, C. F., Sampson, T. R., Standaert, D. G., & Wallen, Z. D. (2023). Population fraction of Parkinson’s disease attributable to preventable risk factors. NPJ Parkinson’s Disease, 9(1), 159. https://doi.org/10.1038/s41531-023-00603-z
Perry, D. C., Sturm, V. E., Peterson, M. J., Pieper, C. F., Bullock, T., Boeve, B. F., Miller, B. L., Guskiewicz, K. M., Berger, M. S., Kramer, J. H., & Welsh-Bohmer, K. A. (2016). Association of traumatic brain injury with subsequent neurological and psychiatric disease: A meta-analysis. Journal of Neurosurgery, 124(2), 511–526. https://doi.org/10.3171/2015.2.JNS14503
Peskind, E. R., Petrie, E. C., Cross, D. J., Pagulayan, K., McCraw, K., Hoff, D., Hart, K., Yu, C.-E., Raskind, M. A., Cook, D. G., & Minoshima, S. (2011). Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war Veterans with persistent post-concussive symptoms. NeuroImage, 54, S76–S82. https://doi.org/10.1016/j.neuroimage.2010.04.008
Peters, P. (2011). Primary blast injury: An intact tympanic membrane does not indicate the lack of a pulmonary blast injury. Military Medicine, 176(1), 110–114. https://doi.org/10.7205/milmed-d-10-00300
Phipps, H., Mondello, S., Wilson, A., Dittmer, T., Rohde, N. N., Schroeder, P. J., Nichols, J., McGirt, C., Hoffman, J., Tanksley, K., Chohan, M., Heiderman, A., Abou Abbass, H., Kobeissy, F., & Hinds, S. (2020). Characteristics and Impact of U.S. Military Blast-Related Mild Traumatic Brain Injury: A Systematic Review. Frontiers in Neurology, 11, 559318. https://doi.org/10.3389/fneur.2020.559318
Pieper, J., Chang, D. G., Mahasin, S. Z., Swan, A. R., Quinto, A. A., Nichols, S. L., Diwakar, M., Huang, C., Swan, J., Lee, R. R., Baker, D. G., & Huang, M. (2020). Brain Amygdala Volume Increases in Veterans and Active-Duty Military Personnel With Combat-Related Posttraumatic Stress Disorder and Mild Traumatic Brain Injury. Journal of Head Trauma Rehabilitation, 35(1), E1–E9. https://doi.org/10.1097/HTR.0000000000000492
Pitkänen, A., & Immonen, R. (2014). Epilepsy related to traumatic brain injury. Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics, 11(2), Article 2. https://doi.org/10.1007/s13311-014-0260-7
Plassman, B. L., Havlik, R. J., Steffens, D. C., Helms, M. J., Newman, T. N., Drosdick, D., Phillips, C., Gau, B. A., Welsh-Bohmer, K. A., Burke, J. R., Guralnik, J. M., & Breitner, J. C. (2000). Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias. Neurology, 55(8), 1158–1166. https://doi.org/10.1212/wnl.55.8.1158
Powell, J. R., Hopfinger, J. B., Giovanello, K. S., Walton, S. R., DeLellis, S. M., Kane, S. F., Means, G. E., & Mihalik, J. P. (2023). Mild traumatic brain injury history is associated with lower brain network resilience in soldiers. Brain Communications, 5(4), fcad201. https://doi.org/10.1093/braincomms/fcad201
Pugh, M. J., Finley, E. P., Wang, C.-P., Copeland, L. A., Jaramillo, C. A., Swan, A. A., Elnitsky, C. A., Leykum, L. K., Mortensen, E. M., Eapen, B. A., Noel, P. H., Pugh, J. A., & TRACC Research Team. (2016). A retrospective cohort study of comorbidity trajectories associated with traumatic brain injury in veterans of the Iraq and Afghanistan wars. Brain Injury, 30(12), Article 12. https://doi.org/10.1080/02699052.2016.1219055
Pugh, M. J., Kennedy, E., Gugger, J. J., Mayo, J., Tate, D., Swan, A., Kean, J., Altalib, H., Gowda, S., Towne, A., Hinds, S., Van Cott, A., Lopez, M. R., Jaramillo, C. A., Eapen, B. C., McCafferty, R. R., Salinsky, M., Cramer, J., McMillan, K. K., … MINUTE Study Group. (2021). The Military Injuries: Understanding Post-Traumatic Epilepsy Study: Understanding Relationships among Lifetime Traumatic Brain Injury History, Epilepsy, and Quality of Life. Journal of Neurotrauma, 38(20), Article 20. https://doi.org/10.1089/neu.2021.0015
Pugh, M. J., Swan, A. A., Carlson, K. F., Jaramillo, C. A., Eapen, B. C., Dillahunt-Aspillaga, C., Amuan, M. E., Delgado, R. E., McConnell, K., Finley, E. P., Grafman, J. H., & Trajectories of Resilience and Complex Comorbidity Study Team. (2018). Traumatic Brain Injury Severity, Comorbidity, Social Support, Family Functioning, and Community Reintegration Among Veterans of the Afghanistan and Iraq Wars. Archives of Physical Medicine and Rehabilitation, 99(2S), Article 2S. https://doi.org/10.1016/j.apmr.2017.05.021
Raj, R., Kaprio, J., Korja, M., Mikkonen, E. D., Jousilahti, P., & Siironen, J. (2017). Risk of hospitalization with neurodegenerative disease after moderate-to-severe traumatic brain injury in the working-age population: A retrospective cohort study using the Finnish national health registries. PLoS Medicine, 14(7), e1002316. https://doi.org/10.1371/journal.pmed.1002316
Rajan, S., & Kaas, B. (2022). Parkinson’s Disease: Risk Factor Modification and Prevention. Seminars in Neurology, 42(5), 626–638. https://doi.org/10.1055/s-0042-1758780
Ranganathan, P., Kumar, R. G., Davis, K., McCullough, E. H., Berga, S. L., & Wagner, A. K. (2016). Longitudinal sex and stress hormone profiles among reproductive age and post-menopausal women after severe TBI: A case series analysis. Brain Injury, 30(4), 452–461. https://doi.org/10.3109/02699052.2016.1144081
Rauchman, S. H., Albert, J., Pinkhasov, A., & Reiss, A. B. (2022). Mild-to-Moderate Traumatic Brain Injury: A Review with Focus on the Visual System. Neurology International, 14(2), 453–470. https://doi.org/10.3390/neurolint14020038
Ravula, A. R., Das, T., Gosain, A., Dolalas, T., Padhi, S., Chandra, N., & Pfister, B. J. (2022). An update on repeated blast traumatic brain injury. Current Opinion in Biomedical Engineering, 24, 100409. https://doi.org/10.1016/j.cobme.2022.100409
Raza, Z., Hussain, S. F., Ftouni, S., Spitz, G., Caplin, N., Foster, R. G., & Gomes, R. S. M. (2021). Dementia in military and veteran populations: A review of risk factors—traumatic brain injury, post-traumatic stress disorder, deployment, and sleep. Military Medical Research, 8(1), 55. https://doi.org/10.1186/s40779-021-00346-z
Reid, M. W., Miller, K. J., Lange, R. T., Cooper, D. B., Tate, D. F., Bailie, J., Brickell, T. A., French, L. M., Asmussen, S., & Kennedy, J. E. (2014). A Multisite Study of the Relationships between Blast Exposures and Symptom Reporting in a Post-Deployment Active-Duty Military Population with Mild Traumatic Brain Injury. Journal of Neurotrauma, 31(23), 1899–1906. https://doi.org/10.1089/neu.2014.3455
Richard, P., Gedeon, D., & Gibson, N. (2024). Racial and ethnic differences in the association between mild traumatic brain injury and work duty limitations in the US military. Brain Injury, 38(3), 210–216. https://doi.org/10.1080/02699052.2024.2309276
Robinson-Freeman, K. E., Collins, K. L., Garber, B., Terblanche, R., Risling, M., Vermetten, E., Besemann, M., Mistlin, A., & Tsao, J. W. (2020). A Decade of mTBI Experience: What Have We Learned? A Summary of Proceedings From a NATO Lecture Series on Military mTBI. Frontiers in Neurology, 11, 836. https://doi.org/10.3389/fneur.2020.00836
Rona, R. J., Jones, M., Fear, N. T., Hull, L., Murphy, D., Machell, L., Coker, B., Iversen, A. C., Jones, N., David, A. S., Greenberg, N., Hotopf, M., & Wessely, S. (2012). Mild Traumatic Brain Injury in UK Military Personnel Returning From Afghanistan and Iraq: Cohort and Cross-sectional Analyses. Journal of Head Trauma Rehabilitation, 27(1), 33–44. https://doi.org/10.1097/HTR.0b013e318212f814
Rona, R. J., Jones, M., Jones, N., Fear, N. T., & Wessely, S. (2020). Long-Term Correlates of Mild Traumatic Brain Injury on Postconcussion Symptoms After Deployment to Iraq and Afghanistan in the UK Military. Journal of Head Trauma Rehabilitation, 35(1), 46–56. https://doi.org/10.1097/HTR.0000000000000497
Rutter, B., Song, H., DePalma, R. G., Hubler, G., Cui, J., Gu, Z., & Johnson, C. E. (2021). Shock Wave Physics as Related to Primary Non-Impact Blast-Induced Traumatic Brain Injury. Military Medicine, 186(Suppl 1), 601–609. https://doi.org/10.1093/milmed/usaa290
Sabet, N., Soltani, Z., & Khaksari, M. (2021). Multipotential and systemic effects of traumatic brain injury. Journal of Neuroimmunology, 357, 577619. https://doi.org/10.1016/j.jneuroim.2021.577619
Sajja, V. S. S. S., LaValle, C., Salib, J. E., Misistia, A. C., Ghebremedhin, M. Y., Ramos, A. N., Egnoto, M. J., Long, J. B., & Kamimori, G. H. (2019). The Role of Very Low-Level Blast Overpressure in Symptomatology. Frontiers in Neurology, 10, 891. https://doi.org/10.3389/fneur.2019.00891
Santos, A., Walsh, H., Anssari, N., Ferreira, I., & Tartaglia, M. C. (2020). Post-Concussion Syndrome and Sleep Apnea: A Retrospective Study. Journal of Clinical Medicine, 9(3), 691. https://doi.org/10.3390/jcm9030691
Savage, E., Forestier, C., Withers, N., Tien, H., & Pannell, D. (2011). Tactical combat casualty care in the Canadian Forces: Lessons learned from the Afghan war. Canadian Journal of Surgery. Journal Canadien De Chirurgie, 54(6), Article 6. https://doi.org/10.1503/cjs.025011
Schairer, K. S. (2012). Mild Traumatic Brain Injury and Associated Effects on the Auditory System. Perspectives on Hearing and Hearing Disorders Research and Diagnostics, 16(1), 18. https://doi.org/10.1044/hhd16.1.18
Scher, A. I., McGinley, J. S., Wirth, R., Lipton, R. B., Terrio, H., Brenner, L. A., Cole, W. R., & Schwab, K. (2021). Headache complexity (number of symptom features) differentiates post-traumatic from non-traumatic headaches. Cephalalgia, 41(5), 582–592. https://doi.org/10.1177/0333102420974352
Schneider, A. L. C., Huie, J. R., Boscardin, W. J., Nelson, L., Barber, J. K., Yaffe, K., Diaz-Arrastia, R., Ferguson, A. R., Kramer, J., Jain, S., Temkin, N., Yuh, E., Manley, G. T., Gardner, R. C., & TRACK-TBI Investigators. (2022). Cognitive Outcome 1 Year After Mild Traumatic Brain Injury: Results From the TRACK-TBI Study. Neurology, 98(12), e1248–e1261. https://doi.org/10.1212/WNL.0000000000200041
Schneiderman, A. I., Braver, E. R., & Kang, H. K. (2008). Understanding Sequelae of Injury Mechanisms and Mild Traumatic Brain Injury Incurred during the Conflicts in Iraq and Afghanistan: Persistent Postconcussive Symptoms and Posttraumatic Stress Disorder. American Journal of Epidemiology, 167(12), 1446–1452. https://doi.org/10.1093/aje/kwn068
Schwab, K. A., Ivins, B., Cramer, G., Johnson, W., Sluss-Tiller, M., Kiley, K., Lux, W., & Warden, D. (2007). Screening for Traumatic Brain Injury in Troops Returning From Deployment in Afghanistan and Iraq: Initial Investigation of the Usefulness of a Short Screening Tool for Traumatic Brain Injury. Journal of Head Trauma Rehabilitation, 22(6), 377–389. https://doi.org/10.1097/01.HTR.0000300233.98242.87
Seager, M. (2024). An examination of the relationship between persistent traumatic brain injuries and chronic pain conditions in active-duty and Veteran soldiers: Results from the Canadian Armed Forces Members and Veterans Mental Health Follow-up Survey. University of Manitoba.
Seal, K. H., Bertenthal, D., Barnes, D. E., Byers, A. L., Strigo, I., Yaffe, K., & Chronic Effects of Neurotrauma Consortium Study Group. (2017). Association of Traumatic Brain Injury With Chronic Pain in Iraq and Afghanistan Veterans: Effect of Comorbid Mental Health Conditions. Archives of Physical Medicine and Rehabilitation, 98(8), Article 8. https://doi.org/10.1016/j.apmr.2017.03.026
Settle, J. R., Clawson, D. M., Sebrechts, M. M., French, L. M., Massey Watts, A. T., & Duncan, C. C. (2019). Prospective Memory in Service Members with Mild Traumatic Brain Injury. Military Medicine, 184(11–12), 723–730. https://doi.org/10.1093/milmed/usz062
Shi, J., Dong, B., Mao, Y., Guan, W., Cao, J., Zhu, R., & Wang, S. (2016). Review: Traumatic brain injury and hyperglycemia, a potentially modifiable risk factor. Oncotarget, 7(43), Article 43. https://doi.org/10.18632/oncotarget.11958
Siedhoff, H. R., Chen, S., Song, H., Cui, J., Cernak, I., Cifu, D. X., DePalma, R. G., & Gu, Z. (2021). Perspectives on Primary Blast Injury of the Brain: Translational Insights Into Non-inertial Low-Intensity Blast Injury. Frontiers in Neurology, 12, 818169. https://doi.org/10.3389/fneur.2021.818169
Silverberg, N. D., Iverson, G. L., ACRM Brain Injury Special Interest Group Mild TBI Task Force members:, Cogan, A., Dams-O-Connor, K., Delmonico, R., Graf, M. J. P., Iaccarino, M. A., Kajankova, M., Kamins, J., McCulloch, K. L., McKinney, G., Nagele, D., Panenka, W. J., Rabinowitz, A. R., Reed, N., Wethe, J. V., Whitehair, V., ACRM Mild TBI Diagnostic Criteria Expert Consensus Group:, … Zemek, R. (2023). The American Congress of Rehabilitation Medicine Diagnostic Criteria for Mild Traumatic Brain Injury. Archives of Physical Medicine and Rehabilitation, 104(8), 1343–1355. https://doi.org/10.1016/j.apmr.2023.03.036
Singh, T., & Seidman, M. (2019). Hearing Disorders Associated With Mild Traumatic Brain Injury (mTBI). In Neurosensory Disorders in Mild Traumatic Brain Injury. Academic Press.
Sivanandam, T. M., & Thakur, M. K. (2012). Traumatic brain injury: A risk factor for Alzheimer’s disease. Neuroscience and Biobehavioral Reviews, 36(5), Article 5. https://doi.org/10.1016/j.neubiorev.2012.02.013
Skjeldal, O. H., Skandsen, T., Kinge, E., Glott, T., & Solbakk, A.-K. (2022). Long-term post-concussion symptoms. Tidsskrift for Den norske legeforening. https://doi.org/10.4045/tidsskr.21.0713
Smith, K. D., Chen, T., & Gan, R. Z. (2020). Hearing Damage Induced by Blast Overpressure at Mild TBI Level in a Chinchilla Model. Military Medicine, 185(Suppl 1), 248–255. https://doi.org/10.1093/milmed/usz309
Soble, J. R., Spanierman, L. B., & Fitzgerald Smith, J. (2013). Neuropsychological functioning of combat veterans with posttraumatic stress disorder and mild traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 35(5), Article 5. https://doi.org/10.1080/13803395.2013.798398
St Onge, P., McIlwain, D. S., Hill, M. E., Walilko, T. J., & Bardolf, L. B. (2011). Marine Corps Breacher Training Study: Auditory and vestibular findings. US Army Medical Department Journal.
Starkey, N. J., Duffy, B., Jones, K., Theadom, A., Barker-Collo, S., Feigin, V., & BIONIC8 Research Group. (2022). Sex differences in outcomes from mild traumatic brain injury eight years post-injury. PloS One, 17(5), e0269101. https://doi.org/10.1371/journal.pone.0269101
Stein, M. B., Kessler, R. C., Heeringa, S. G., Jain, S., Campbell-Sills, L., Colpe, L. J., Fullerton, C. S., Nock, M. K., Sampson, N. A., Schoenbaum, M., Sun, X., Thomas, M. L., Ursano, R. J., & On behalf of the Army STARRS collaborators. (2015). Prospective Longitudinal Evaluation of the Effect of Deployment-Acquired Traumatic Brain Injury on Posttraumatic Stress and Related Disorders: Results From the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS). American Journal of Psychiatry, 172(11), 1101–1111. https://doi.org/10.1176/appi.ajp.2015.14121572
Stein, M. B., Walker, J. R., Hazen, A. L., & Forde, D. R. (1997). Full and partial posttraumatic stress disorder: Findings from a community survey. The American Journal of Psychiatry, 154(8), 1114–1119. https://doi.org/10.1176/ajp.154.8.1114
Stojanovic, M. P., Fonda, J., Fortier, C. B., Higgins, D. M., Rudolph, J. L., Milberg, W. P., & McGlinchey, R. E. (2016). Influence of Mild Traumatic Brain Injury (TBI) and Posttraumatic Stress Disorder (PTSD) on Pain Intensity Levels in OEF/OIF/OND Veterans. Pain Medicine, 17(11), 2017–2025. https://doi.org/10.1093/pm/pnw042
Stone, J. R., Avants, B. B., Tustison, N. J., Wassermann, E. M., Gill, J., Polejaeva, E., Dell, K. C., Carr, W., Yarnell, A. M., LoPresti, M. L., Walker, P., O’Brien, M., Domeisen, N., Quick, A., Modica, C. M., Hughes, J. D., Haran, Francis. J., Goforth, C., & Ahlers, S. T. (2020). Functional and Structural Neuroimaging Correlates of Repetitive Low-Level Blast Exposure in Career Breachers. Journal of Neurotrauma, 37(23), 2468–2481. https://doi.org/10.1089/neu.2020.7141
Stromberg, K. M., Martindale, S. L., Walker, W. C., Ou, Z., Pogoda, T. K., Miles, S. R., Dismuke-Greer, C. E., Carlson, K. F., Rowland, J. A., O’Neil, M. E., & Pugh, M. J. (2023). Mild traumatic brain injury, PTSD symptom severity, and behavioral dyscontrol: A LIMBIC-CENC study. Frontiers in Neurology, 14, 1286961. https://doi.org/10.3389/fneur.2023.1286961
Swan, A. A., Nelson, J. T., Pogoda, T. K., Akin, F. W., Riska, K. M., Hall, C. D., Amuan, M. E., Yaffe, K., Pugh, M. J., & Chronic Effects of Neurotrauma Consortium. (2020). Association of Traumatic Brain Injury With Vestibular Dysfunction and Dizziness in Post-9/11 Veterans. The Journal of Head Trauma Rehabilitation, 35(3), E253–E265. https://doi.org/10.1097/HTR.0000000000000513
Swan, A. A., Nelson, J. T., Swiger, B., Jaramillo, C. A., Eapen, B. C., Packer, M., & Pugh, M. J. (2017). Prevalence of hearing loss and tinnitus in Iraq and Afghanistan Veterans: A Chronic Effects of Neurotrauma Consortium study. Hearing Research, 349, 4–12. https://doi.org/10.1016/j.heares.2017.01.013
Swan, A., Sanford, E., Wright, A., & Tapia, R. (2024). Sex Differences in Functionality and Symptom Burden on Life Satisfaction among Veterans with Mild Traumatic Brain Injury. Archives of Physical Medicine and Rehabilitation, 105(4), e71–e72. https://doi.org/10.1016/j.apmr.2024.02.200
Sylvia, F. R., Drake, A. I., & Wester, D. C. (2001). Transient vestibular balance dysfunction after primary blast injury. Military Medicine, 166(10), 918–920.
Szczupak, M., Hoffer, M. E., Gottshall, K., & Viirre, E. S. (2020). Vestibular Consequences of Mild Traumatic Brain Injury (mTBI). In J. W. Tsao (Ed.), Traumatic Brain Injury (pp. 151–158). Springer International Publishing. https://doi.org/10.1007/978-3-030-22436-3_8
Taber, K. H., Warden, D. L., & Hurley, R. A. (2006). Blast-Related Traumatic Brain Injury: What Is Known? The Journal of Neuropsychiatry and Clinical Neurosciences, 18(2), 141–145. https://doi.org/10.1176/jnp.2006.18.2.141
Tan, X. G., & Matic, P. (2020). Simulation of Cumulative Exposure Statistics for Blast Pressure Transmission Into the Brain. Military Medicine, 185(Supplement_1), 214–226. https://doi.org/10.1093/milmed/usz308
Tanev, K. S., Pentel, K. Z., Kredlow, M. A., & Charney, M. E. (2014). PTSD and TBI co-morbidity: Scope, clinical presentation and treatment options. Brain Injury, 28(3), 261–270. https://doi.org/10.3109/02699052.2013.873821
Tate, C. M., Wang, K. K. W., Eonta, S., Zhang, Y., Carr, W., Tortella, F. C., Hayes, R. L., & Kamimori, G. H. (2013). Serum Brain Biomarker Level, Neurocognitive Performance, and Self-Reported Symptom Changes in Soldiers Repeatedly Exposed to Low-Level Blast: A Breacher Pilot Study. Journal of Neurotrauma, 30(19), 1620–1630. https://doi.org/10.1089/neu.2012.2683
Taylor, L. A., Kreutzer, J. S., Demm, S. R., & Meade, M. A. (2003). Traumatic brain injury and substance abuse: A review and analysis of the literature. Neuropsychological Rehabilitation, 13(1–2), Article 1–2. https://doi.org/10.1080/09602010244000336
Teasdale, G., & Jennett, B. (1974). ASSESSMENT OF COMA AND IMPAIRED CONSCIOUSNESS. The Lancet, 304(7872), 81–84. https://doi.org/10.1016/S0140-6736(74)91639-0
Teasell, R., Flores-Sandoval, C., Bateman, E. A., MacKenzie, H. M., Sequeira, K., Bayley, M., & Janzen, S. (2024). Overview of randomized controlled trials of moderate to severe traumatic brain injury: A systematic review. NeuroRehabilitation. https://doi.org/10.3233/NRE-240019
Terrio, H., Brenner, L. A., Ivins, B. J., Cho, J. M., Helmick, K., Schwab, K., Scally, K., Bretthauer, R., & Warden, D. (2009). Traumatic Brain Injury Screening: Preliminary Findings in a US Army Brigade Combat Team. Journal of Head Trauma Rehabilitation, 24(1), 14–23. https://doi.org/10.1097/HTR.0b013e31819581d8
Terry, G., Pagulayan, K. F., Muzi, M., Mayer, C., Murray, D. R., Schindler, A. G., Richards, T. L., McEvoy, C., Crabtree, A., McNamara, C., Means, G., Muench, P., Powell, J. R., Mihalik, J. P., Thomas, R. G., Raskind, M. A., Peskind, E. R., & Meabon, J. S. (2024). Increased [18F] Fluorodeoxyglucose Uptake in the Left Pallidum in Military Veterans with Blast-Related Mild Traumatic Brain Injury: Potential as an Imaging Biomarker and Mediation with Executive Dysfunction and Cognitive Impairment. Journal of Neurotrauma. https://doi.org/10.1089/neu.2023.0429
Thiagarajan, P., Ciuffreda, K. J., & Ludlam, D. P. (2011). Vergence dysfunction in mild traumatic brain injury (mTBI): A review. Ophthalmic & Physiological Optics: The Journal of the British College of Ophthalmic Opticians (Optometrists), 31(5), 456–468. https://doi.org/10.1111/j.1475-1313.2011.00831.x
Thiel, K. J., Dretsch, M. N., & Ahroon, W. A. (2015). The Effects of Low-level Repetitive Blasts on Neuropsychological Functioning: Defense Technical Information Center. https://doi.org/10.21236/AD1005243
Thompson, J. M., Scott, K. C., & Dubinsky, L. (2008). Battlefield brain: Unexplained symptoms and blast-related mild traumatic brain injury. Canadian Family Physician Medecin De Famille Canadien, 54(11), Article 11.
Trillingsgaard Næss‐Schmidt, E., Udby Blicher, J., Møller Thastum, M., Ulrikka Rask, C., Wulff Svendsen, S., Schröder, A., Høgh Tuborgh, A., Østergaard, L., Sangill, R., Lund, T., Nørhøj Jespersen, S., Roer Pedersen, A., Hansen, B., Fristed Eskildsen, S., & Feldbæk Nielsen, J. (2021). Microstructural changes in the brain after long‐term post‐concussion symptoms: A randomized trial. Journal of Neuroscience Research, 99(3), 872–886. https://doi.org/10.1002/jnr.24773
Troyanskaya, M., Pastorek, N. J., Scheibel, R. S., Petersen, N. J., McCulloch, K., Wilde, E. A., Henson, H. K., & Levin, H. S. (2015). Combat Exposure, PTSD Symptoms, and Cognition Following Blast-Related Traumatic Brain Injury in OEF/OIF/OND Service Members and Veterans. Military Medicine, 180(3), 285–289. https://doi.org/10.7205/MILMED-D-14-00256
Valera, E. M., Joseph, A.-L. C., Snedaker, K., Breiding, M. J., Robertson, C. L., Colantonio, A., Levin, H., Pugh, M. J., Yurgelun-Todd, D., Mannix, R., Bazarian, J. J., Turtzo, L. C., Turkstra, L. S., Begg, L., Cummings, D. M., & Bellgowan, P. S. F. (2021). Understanding Traumatic Brain Injury in Females: A State-of-the-Art Summary and Future Directions. The Journal of Head Trauma Rehabilitation, 36(1), Article 1. https://doi.org/10.1097/HTR.0000000000000652
Van Pelt, K. L., Allred, C. D., Brodeur, R., Cameron, K. L., Campbell, D. E., D’Lauro, C. J., He, X., Houston, M. N., Johnson, B. R., Kelly, T. F., McGinty, G., Meehan, S. K., O’Donnell, P. G., Peck, K. Y., Svoboda, S. J., Pasquina, P., McAllister, T., McCrea, M., & Broglio, S. P. (2020). Concussion-Recovery Trajectories Among Tactical Athletes: Results From the CARE Consortium. Journal of Athletic Training, 55(7), 658–665. https://doi.org/10.4085/1062-6050-10-19
Van Pelt, K. L., Wolff, L., Campbell, D. E., McGinty, G., Zupan, M., & Jackson, J. C. (2023). Investigation of Aerobic and Muscular Fitness and Concussion Among Service Academy Cadets at the United States Air Force Academy: Results from the CARE Consortium. Military Medicine, 188(7–8), e1887–e1894. https://doi.org/10.1093/milmed/usab440
Vanderploeg, R. D., Belanger, H. G., Horner, R. D., Spehar, A. M., Powell-Cope, G., Luther, S. L., & Scott, S. G. (2012). Health Outcomes Associated With Military Deployment: Mild Traumatic Brain Injury, Blast, Trauma, and Combat Associations in the Florida National Guard. Archives of Physical Medicine and Rehabilitation, 93(11), 1887–1895. https://doi.org/10.1016/j.apmr.2012.05.024
Vander Werff, K. R. (2012). Auditory Dysfunction Among Long-Term Consequences of Mild Traumatic Brain Injury (mTBI). Perspectives on Hearing and Hearing Disorders Research and Diagnostics, 16(1), 3. https://doi.org/10.1044/hhd16.1.3
Vander Werff Kathy, R. (2016). The Application of the International Classification of Functioning, Disability and Health to Functional Auditory Consequences of Mild Traumatic Brain Injury. Seminars in Hearing, 37(3), 216–232. https://doi.org/10.1055/s-0036-1584409
Vander Werff, K. R., & Rieger, B. (2019). Auditory and Cognitive Behavioral Performance Deficits and Symptom Reporting in Postconcussion Syndrome Following Mild Traumatic Brain Injury. Journal of Speech, Language, and Hearing Research: JSLHR, 62(7), 2501–2518. https://doi.org/10.1044/2019_JSLHR-H-18-0281
Vartanian, O., Coady, L., Blackler, K., Fraser, B., & Cheung, B. (2021). Neuropsychological, Neurocognitive, Vestibular, and Neuroimaging Correlates of Exposure to Repetitive Low-Level Blast Waves: Evidence From Four Nonoverlapping Samples of Canadian Breachers. Military Medicine, 186(3–4), e393–e400. https://doi.org/10.1093/milmed/usaa332
Vartanian, O., Tenn, C., Rhind, S. G., Nakashima, A., Di Battista, A. P., Sergio, L. E., Gorbet, D. J., Fraser, D. D., Colantonio, A., King, K., Lam, Q., Saunders, D., & Jetly, R. (2020). Blast in Context: The Neuropsychological and Neurocognitive Effects of Long-Term Occupational Exposure to Repeated Low-Level Explosives on Canadian Armed Forces’ Breaching Instructors and Range Staff. Frontiers in Neurology, 11, 588531. https://doi.org/10.3389/fneur.2020.588531
Vassallo, J. L., Proctor-Weber, Z., Lebowitz, B. K., Curtiss, G., & Vanderploeg, R. D. (2007). Psychiatric risk factors for traumatic brain injury. Brain Injury, 21(6), Article 6. https://doi.org/10.1080/02699050701426832
Verboon, L. N., Patel, H. C., & Greenhalgh, A. D. (2021). The Immune System’s Role in the Consequences of Mild Traumatic Brain Injury (Concussion). Frontiers in Immunology, 12, 620698. https://doi.org/10.3389/fimmu.2021.620698
Vile, A. R., & Atkinson, L. (2017). Chronic Traumatic Encephalopathy: The cellular sequela to repetitive brain injury. Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia, 41, 24–29. https://doi.org/10.1016/j.jocn.2017.03.035
Vincent, A. S., Roebuck-Spencer, T. M., & Cernich, A. (2014). Cognitive changes and dementia risk after traumatic brain injury: Implications for aging military personnel. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 10(3 Suppl), S174-187. https://doi.org/10.1016/j.jalz.2014.04.006
Viola-Saltzman, M., & Musleh, C. (2016). Traumatic brain injury-induced sleep disorders. Neuropsychiatric Disease and Treatment, 339. https://doi.org/10.2147/NDT.S69105
Viola-Saltzman, M., & Watson, N. F. (2012). Traumatic brain injury and sleep disorders. Neurologic Clinics, 30(4), 1299–1312. https://doi.org/10.1016/j.ncl.2012.08.008
Vorn, R., Edwards, K. A., Hentig, J., Yun, S., Kim, H.-S., Lai, C., Devoto, C., Yarnell, A. M., Polejaeva, E., Dell, K. C., LoPresti, M. L., Walker, P., Carr, W., Stone, J. R., Ahlers, S. T., & Gill, J. M. (2022). A Pilot Study of Whole-Blood Transcriptomic Analysis to Identify Genes Associated with Repetitive Low-Level Blast Exposure in Career Breachers. Biomedicines, 10(3), 690. https://doi.org/10.3390/biomedicines10030690
Vorn, R., Naunheim, R., Lai, C., Wagner, C., & Gill, J. M. (2022). Elevated Axonal Protein Markers Following Repetitive Blast Exposure in Military Personnel. Frontiers in Neuroscience, 16, 853616. https://doi.org/10.3389/fnins.2022.853616
Walker, W. C., Clark, S. W., Eppich, K., Wilde, E. A., Martin, A. M., Allen, C. M., Cortez, M. M., Pugh, M. J., Walton, S. R., & Kenney, K. (2023). Headache among combat-exposed veterans and service members and its relation to mild traumatic brain injury history and other factors: A LIMBIC-CENC study. Frontiers in Neurology, 14, 1242871. https://doi.org/10.3389/fneur.2023.1242871
Walker, W. C., O’Neil, M. E., Ou, Z., Pogoda, T. K., Belanger, H. G., Scheibel, R. S., Presson, A. P., Miles, S. R., Wilde, E. A., Tate, D. F., Troyanskaya, M., Pugh, M. J., Jak, A., & Cifu, D. X. (2023). Can mild traumatic brain injury alter cognition chronically? A LIMBIC-CENC multicenter study. Neuropsychology, 37(1), 1–19. https://doi.org/10.1037/neu0000855
Walker, W. C., O’Rourke, J., Wilde, E. A., Pugh, M. J., Kenney, K., Dismuke-Greer, C. L., Ou, Z., Presson, A. P., Werner, J. K., Kean, J., Barnes, D., Karmarkar, A., Yaffe, K., & Cifu, D. (2022). Clinical features of dementia cases ascertained by ICD coding in LIMBIC-CENC multicenter study of mild traumatic brain injury. Brain Injury, 36(5), 644–651. https://doi.org/10.1080/02699052.2022.2033849
Wang, Z., Wilson, C. M., Mendelev, N., Ge, Y., Galfalvy, H., Elder, G., Ahlers, S., Yarnell, A. M., LoPresti, M. L., Kamimori, G. H., Carr, W., & Haghighi, F. (2020). Acute and Chronic Molecular Signatures and Associated Symptoms of Blast Exposure in Military Breachers. Journal of Neurotrauma, 37(10), 1221–1232. https://doi.org/10.1089/neu.2019.6742
Waters, A. B., Bottari, S. A., Jones, L. C., Lamb, D. G., Lewis, G. F., & Williamson, J. B. (2023). Regional associations of white matter integrity and neurological, post-traumatic stress disorder and autonomic symptoms in Veterans with and without history of loss of consciousness in mild TBI. Frontiers in Neuroimaging, 2, 1265001. https://doi.org/10.3389/fnimg.2023.1265001
Webster, J. B., Bell, K. R., Hussey, J. D., Natale, T. K., & Lakshminarayan, S. (2001). Sleep apnea in adults with traumatic brain injury: A preliminary investigation. Archives of Physical Medicine and Rehabilitation, 82(3), 316–321. https://doi.org/10.1053/apmr.2001.20840
White, M., Duquette-Laplante, F., Jutras, B., Bursch, C., & Koravand, A. (2022). A Retrospective Study of the Effects of Traumatic Brain Injury on Auditory Function: From a Clinical Perspective. NeuroSci, 3(1), 52–62. https://doi.org/10.3390/neurosci3010004
Whiteneck, G., Williams, W., Almeida, E., Bidelspach, D., Culpepper, W., Picon, L. M., Eagye, C., & Dr Mellick, D. (2024). Two Decades of Department of Veterans Affairs Traumatic Brain Injury Care and Benefits for Veterans of Post-9/11 Conflicts. Journal of Head Trauma Rehabilitation. https://doi.org/10.1097/HTR.0000000000000952
Wilson, L., Stewart, W., Dams-O’Connor, K., Diaz-Arrastia, R., Horton, L., Menon, D. K., & Polinder, S. (2017a). The chronic and evolving neurological consequences of traumatic brain injury. The Lancet. Neurology, 16(10), 813–825. https://doi.org/10.1016/S1474-4422(17)30279-X
Wilson, L., Stewart, W., Dams-O’Connor, K., Diaz-Arrastia, R., Horton, L., Menon, D. K., & Polinder, S. (2017b). The chronic and evolving neurological consequences of traumatic brain injury. The Lancet. Neurology, 16(10), Article 10. https://doi.org/10.1016/S1474-4422(17)30279-X
Witcher, K. G., Eiferman, D. S., & Godbout, J. P. (2015). Priming the inflammatory pump of the CNS after traumatic brain injury. Trends in Neurosciences, 38(10), 609–620. https://doi.org/10.1016/j.tins.2015.08.002
Wojtowicz, M., Silverberg, N. D., Bui, E., Zafonte, R., Simon, N., & Iverson, G. L. (2017). Psychiatric Comorbidity and Psychosocial Problems Among Treatment-Seeking Veterans With a History of Mild Traumatic Brain Injury. Focus (American Psychiatric Publishing), 15(4), Article 4. https://doi.org/10.1176/appi.focus.20170028
Woodall, J. L. A., Sak, J. A., Cowdrick, K. R., Bove Muñoz, B. M., McElrath, J. H., Trimpe, G. R., Mei, Y., Myhre, R. L., Rains, J. K., & Hutchinson, C. R. (2023). Repetitive Low-level Blast Exposure and Neurocognitive Effects in Army Ranger Mortarmen. Military Medicine, 188(3–4), e771–e779. https://doi.org/10.1093/milmed/usab394
World Health Organization.(2022). ICD-11: International classification of diseases (11th revision). https://icd.who.int/
Xiong, K., Zhu, Y., Zhang, Y., Yin, Z., Zhang, J., Qiu, M., & Zhang, W. (2014). White matter integrity and cognition in mild traumatic brain injury following motor vehicle accident. Brain Research, 1591, 86–92. https://doi.org/10.1016/j.brainres.2014.10.030
Yousefzadeh-Chabok, S., Kapourchali, F. R., & Ramezani, S. (2021). Determinants of long-term health-related quality of life in adult patients with mild traumatic brain injury. European Journal of Trauma and Emergency Surgery, 47(3), 839–846. https://doi.org/10.1007/s00068-019-01252-9
Yuan, W., Dudley, J., Slutsky-Ganesh, A. B., Leach, J., Scheifele, P., Altaye, M., Barber Foss, K. D., Diekfuss, J. D., Rhea, C. K., & Myer, G. D. (2021). White Matter Alteration Following SWAT Explosive Breaching Training and the Moderating Effect of a Neck Collar Device: A DTI and NODDI Study. Military Medicine, 186(11–12), 1183–1190. https://doi.org/10.1093/milmed/usab168
Zamorski, M. A., & Boulos, D. (2014). The impact of the military mission in Afghanistan on mental health in the Canadian Armed Forces: A summary of research findings. European Journal of Psychotraumatology, 5. https://doi.org/10.3402/ejpt.v5.23822
Zatzick, D. F., Rivara, F. P., Jurkovich, G. J., Hoge, C. W., Wang, J., Fan, M.-Y., Russo, J., Trusz, S. G., Nathens, A., & Mackenzie, E. J. (2010). Multisite investigation of traumatic brain injuries, posttraumatic stress disorder, and self-reported health and cognitive impairments. Archives of General Psychiatry, 67(12), 1291–1300. https://doi.org/10.1001/archgenpsychiatry.2010.158
Zeiler, F. A., McFadyen, C., Newcombe, V. F. J., Synnot, A., Donoghue, E. L., Ripatti, S., Steyerberg, E. W., Gruen, R. L., McAllister, T. W., Rosand, J., Palotie, A., Maas, A. I. R., & Menon, D. K. (2021). Genetic Influences on Patient-Oriented Outcomes in Traumatic Brain Injury: A Living Systematic Review of Non-Apolipoprotein E Single-Nucleotide Polymorphisms. Journal of Neurotrauma, 38(8), 1107–1123. https://doi.org/10.1089/neu.2017.5583